Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 468(7323): 585-8, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21048710

RESUMO

Many physiological events require transient increases in cytosolic Ca(2+) concentrations. Ryanodine receptors (RyRs) are ion channels that govern the release of Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Mutations in RyRs can lead to severe genetic conditions that affect both cardiac and skeletal muscle, but locating the mutated residues in the full-length channel structure has been difficult. Here we show the 2.5 Å resolution crystal structure of a region spanning three domains of RyR type 1 (RyR1), encompassing amino acid residues 1-559. The domains interact with each other through a predominantly hydrophilic interface. Docking in RyR1 electron microscopy maps unambiguously places the domains in the cytoplasmic portion of the channel, forming a 240-kDa cytoplasmic vestibule around the four-fold symmetry axis. We pinpoint the exact locations of more than 50 disease-associated mutations in full-length RyR1 and RyR2. The mutations can be classified into three groups: those that destabilize the interfaces between the three amino-terminal domains, disturb the folding of individual domains or affect one of six interfaces with other parts of the receptor. We propose a model whereby the opening of a RyR coincides with allosterically coupled motions within the N-terminal domains. This process can be affected by mutations that target various interfaces within and across subunits. The crystal structure provides a framework to understand the many disease-associated mutations in RyRs that have been studied using functional methods, and will be useful for developing new strategies to modulate RyR function in disease states.


Assuntos
Modelos Moleculares , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Mutação/genética , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
Biophys J ; 103(11): 2243-51, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23283222

RESUMO

Voltage-gated sodium channels (Na(V)s) underlie the upstroke of the action potential in the excitable tissues of nerve and muscle. After opening, Na(V)s rapidly undergo inactivation, a crucial process through which sodium conductance is negatively regulated. Disruption of inactivation by inherited mutations is an established cause of lethal cardiac arrhythmia, epilepsy, or painful syndromes. Intracellular calcium ions (Ca(2+)) modulate sodium channel inactivation, and multiple players have been suggested in this process, including the cytoplasmic Na(V) C-terminal region including two EF-hands and an IQ motif, the Na(V) domain III-IV linker, and calmodulin. Calmodulin can bind to the IQ domain in both Ca(2+)-bound and Ca(2+)-free conditions, but only to the DIII-IV linker in a Ca(2+)-loaded state. The mechanism of Ca(2+) regulation, and its composite effect(s) on channel gating, has been shrouded in much controversy owing to numerous apparent experimental inconsistencies. Herein, we attempt to summarize these disparate data and propose a novel, to our knowledge, physiological mechanism whereby calcium ions promote sodium current facilitation due to Ca(2+) memory at high-action-potential frequencies where Ca(2+) levels may accumulate. The available data suggest that this phenomenon may be disrupted in diseases where cytoplasmic calcium ion levels are chronically high and where targeted phosphorylation may decouple the Ca(2+) regulatory machinery. Many Na(V) disease mutations associated with electrical dysfunction are located in the Ca(2+)-sensing machinery and misregulation of Ca(2+)-dependent channel modulation is likely to contribute to disease phenotypes.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Simulação por Computador , Humanos
3.
Proteomics ; 12(13): 2094-106, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22623184

RESUMO

ABL tyrosine kinase inhibitor (TKI) therapy induces clinical remission in chronic myeloid leukemia (CML) patients but early relapses and later emergence of TKI-resistant disease remain problematic. We recently demonstrated that the AHI-1 oncogene physically interacts with BCR-ABL and JAK2 and mediates cellular resistance to TKI in CML stem/progenitor cells. We now show that deletion of the SH3 domain of AHI-1 significantly enhances apoptotic response of BCR-ABL(+) cells to TKIs compared to cells expressing full-length AHI-1. We have also discovered a novel interaction between AHI-1 and Dynamin-2, a GTPase, through the AHI-1 SH3 domain. The crystal structure of the AHI-1 SH3 domain at 1.53-Å resolution reveals that it adopts canonical SH3 folding, with the exception of an unusual C-terminal α helix. PD1R peptide, known to interact with the PI3K SH3 domain, was used to model the binding pattern between the AHI-1 SH3 domain and its ligands. These studies showed that an "Arg-Arg-Trp" stack may form within the binding interface, providing a potential target site for designing specific drugs. The crystal structure of the AHI-1 SH3 domain thus provides a valuable tool for identification of key interaction sites in regulation of drug resistance and for the development of small molecule inhibitors for CML.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Domínios de Homologia de src , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Dinamina II/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Ligantes , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Deleção de Sequência
4.
Structure ; 21(8): 1440-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23871484

RESUMO

Ryanodine receptors (RyRs) are calcium release channels located in the membrane of the endoplasmic and sarcoplasmic reticulum and play a major role in muscle excitation-contraction coupling. The cardiac isoform (RyR2) is the target for >150 mutations that cause catecholaminergic polymorphic ventricular tachycardia (CPVT) and other conditions. Here, we present the crystal structure of the N-terminal region of RyR2 (1-547), an area encompassing 29 distinct disease mutations. The protein folds up in three individual domains, which are held together via a central chloride anion that shields repulsive positive charges. Several disease mutant versions of the construct drastically destabilize the protein. The R420Q disease mutant causes CPVT and ablates chloride binding. The mutation results in reorientations of the first two domains relative to the third domain. These conformational changes likely activate the channel by destabilizing intersubunit interactions that are disrupted upon channel opening.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Sítios de Ligação , Brometos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Mutação de Sentido Incorreto , Cloreto de Potássio/química , Compostos de Potássio/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética
5.
Curr Biol ; 23(18): 1825-33, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24012314

RESUMO

The establishment of a multicellular body plan requires coordinating changes in cell adhesion and the cytoskeleton to ensure proper cell shape and position within a tissue. Cell adhesion to the extracellular matrix (ECM) via integrins plays diverse, essential roles during animal embryogenesis and therefore must be precisely regulated. Talin, a FERM-domain containing protein, forms a direct link between integrin adhesion receptors and the actin cytoskeleton and is an important regulator of integrin function. Similar to other FERM proteins, talin makes an intramolecular interaction that could autoinhibit its activity. However, the functional consequence of such an interaction has not been previously explored in vivo. Here, we demonstrate that targeted disruption of talin autoinhibition gives rise to morphogenetic defects during fly development and specifically that dorsal closure (DC), a process that resembles wound healing, is delayed. Impairment of autoinhibition leads to reduced talin turnover at and increased talin and integrin recruitment to sites of integrin-ECM attachment. Finally, we present evidence that talin autoinhibition is regulated by Rap1-dependent signaling. Based on our data, we propose that talin autoinhibition provides a switch for modulating adhesion turnover and adhesion stability that is essential for morphogenesis.


Assuntos
Drosophila/crescimento & desenvolvimento , Morfogênese/genética , Talina/genética , Animais , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Mutação , Transdução de Sinais , Talina/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/fisiologia
6.
Structure ; 19(6): 790-8, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21645850

RESUMO

Mutations in the cardiac Ryanodine Receptor (RYR2) are linked to triggered arrhythmias. Removal of exon 3 results in a severe form of catecholaminergic polymorphic ventricular tachycardia (CPVT). This exon encodes secondary structure elements that are crucial for folding of the N-terminal domain (NTD), raising the question of why the deletion is neither lethal nor confers a loss of function. We determined the 2.3 Å crystal structure of the NTD lacking exon 3. The removal causes a structural rescue whereby a flexible loop inserts itself into the ß trefoil domain and increases thermal stability. The exon 3 deletion is not tolerated in the corresponding RYR1 domain. The rescue shows a novel mechanism by which RYR2 channels can adjust their Ca²âº release properties through altering the structure of the NTD. Despite the rescue, the deletion affects interfaces with other RYR2 domains. We propose that relative movement of the NTD is allosterically coupled to the pore region.


Assuntos
Éxons/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Deleção de Sequência , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Doenças Genéticas Inatas/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Miocárdio/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Homologia Estrutural de Proteína , Propriedades de Superfície , Taquicardia Ventricular/genética , Temperatura de Transição
7.
Structure ; 17(11): 1505-14, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19913485

RESUMO

Ryanodine receptors (RyRs) are channels governing the release of Ca(2+) from the sarcoplasmic or endoplasmic reticulum. They are required for the contraction of both skeletal (RyR1) and cardiac (RyR2) muscles. Mutations in both RyR1 and RyR2 have been associated with severe genetic disorders, but high-resolution data describing the disease variants in detail have been lacking. Here we present the crystal structures of the N-terminal domains of both RyR2 (1-217) and RyR1 (9-205) at 2.55 A and 2.9 A, respectively. The domains map in a hot spot region for disease mutations. Both structures consist of a core beta trefoil domain flanked by an alpha helix. Crystal structures of two RyR2 disease mutants, A77V (2.2 A) and V186M (1.7 A), show that the mutations cause distinct local changes in the surface of the protein. A RyR2 deletion mutant causes significant changes in the thermal stability. The disease positions highlight two putative binding interfaces required for normal RyR function.


Assuntos
Modelos Moleculares , Músculo Esquelético/química , Miocárdio/química , Conformação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Cristalografia , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA