Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892290

RESUMO

Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.


Assuntos
Neoplasias da Mama , Ciclo-Oxigenase 2 , Progressão da Doença , Óxido Nítrico Sintase Tipo II , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino , Óxido Nítrico Sintase Tipo II/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Óxido Nítrico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(44): 27423-27434, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060293

RESUMO

Localization of RNAs at protrusive regions of cells is important for single-cell migration on two-dimensional surfaces. Protrusion-enriched RNAs encode factors linked to cancer progression, such as the RAB13 GTPase and the NET1 guanine nucleotide exchange factor, and are regulated by the tumor-suppressor protein APC. However, tumor cells in vivo often do not move as single cells but rather utilize collective modes of invasion and dissemination. Here, we developed an inducible system of three-dimensional (3D) collective invasion to study the behavior and importance of protrusion-enriched RNAs. We find that, strikingly, both the RAB13 and NET1 RNAs are enriched specifically at the invasive front of leader cells in invasive cell strands. This localization requires microtubules and coincides with sites of high laminin concentration. Indeed, laminin association and integrin engagement are required for RNA accumulation at the invasive front. Importantly, perturbing RNA accumulation reduces collective 3D invasion. Examination of in vivo tumors reveals a similar localization of the RAB13 and NET1 RNAs at potential invasive sites, suggesting that this mechanism could provide a targeting opportunity for interfering with collective cancer cell invasion.


Assuntos
Movimento Celular/genética , Invasividade Neoplásica/genética , Neoplasias/patologia , RNA Mensageiro/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Microscopia Intravital , Camundongos , Microscopia Confocal , Invasividade Neoplásica/prevenção & controle , Neoplasias/genética , Proteínas Oncogênicas/genética , RNA Interferente Pequeno , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rab de Ligação ao GTP/genética
3.
Br J Cancer ; 125(4): 534-546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155340

RESUMO

BACKGROUND: There is a need to improve the treatment of prostate cancer (PCa) and reduce treatment side effects. Vascular-targeted photodynamic therapy (VTP) is a focal therapy for low-risk low-volume localised PCa, which rapidly disrupts targeted tumour vessels. There is interest in expanding the use of VTP to higher-risk disease. Tumour vasculature is characterised by vessel immaturity, increased permeability, aberrant branching and inefficient flow. FRT alters the tumour microenvironment and promotes transient 'vascular normalisation'. We hypothesised that multimodality therapy combining fractionated radiotherapy (FRT) and VTP could improve PCa tumour control compared against monotherapy with FRT or VTP. METHODS: We investigated whether sequential delivery of FRT followed by VTP 7 days later improves flank TRAMP-C1 PCa tumour allograft control compared to monotherapy with FRT or VTP. RESULTS: FRT induced 'vascular normalisation' changes in PCa flank tumour allografts, improving vascular function as demonstrated using dynamic contrast-enhanced magnetic resonance imaging. FRT followed by VTP significantly delayed tumour growth in flank PCa allograft pre-clinical models, compared with monotherapy with FRT or VTP, and improved overall survival. CONCLUSION: Combining FRT and VTP may be a promising multimodal approach in PCa therapy. This provides proof-of-concept for this multimodality treatment to inform early phase clinical trials.


Assuntos
Neovascularização Patológica/terapia , Fotoquimioterapia/métodos , Neoplasias da Próstata/terapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Fracionamento da Dose de Radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Neoplasias da Próstata/irrigação sanguínea , Análise de Sobrevida , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nature ; 522(7556): 368-72, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25938715

RESUMO

Knowledge of the structure and dynamics of RNA molecules is critical to understanding their many biological functions. Furthermore, synthetic RNAs have applications as therapeutics and molecular sensors. Both research and technological applications of RNA would be dramatically enhanced by methods that enable incorporation of modified or labelled nucleotides into specifically designated positions or regions of RNA. However, the synthesis of tens of milligrams of such RNAs using existing methods has been impossible. Here we develop a hybrid solid-liquid phase transcription method and automated robotic platform for the synthesis of RNAs with position-selective labelling. We demonstrate its use by successfully preparing various isotope- or fluorescently labelled versions of the 71-nucleotide aptamer domain of an adenine riboswitch for nuclear magnetic resonance spectroscopy or single-molecule Förster resonance energy transfer, respectively. Those RNAs include molecules that were selectively isotope-labelled in specific loops, linkers, a helix, several discrete positions, or a single internal position, as well as RNA molecules that were fluorescently labelled in and near kissing loops. These selectively labelled RNAs have the same fold as those transcribed using conventional methods, but they greatly simplify the interpretation of NMR spectra. The single-position isotope- and fluorescently labelled RNA samples reveal multiple conformational states of the adenine riboswitch. Lastly, we describe a robotic platform and the operation that automates this technology. Our selective labelling method may be useful for studying RNA structure and dynamics and for making RNA sensors for a variety of applications including cell-biological studies, substance detection, and disease diagnostics.


Assuntos
Fluorescência , Marcação por Isótopo/métodos , RNA/química , RNA/síntese química , Adenina/análise , Adenina/química , Adenina/metabolismo , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Automação/métodos , Sequência de Bases , Técnicas Biossensoriais , DNA/genética , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/análise , RNA/genética , Riboswitch/genética , Robótica , Moldes Genéticos , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 115(38): E8919-E8928, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30185559

RESUMO

Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in Drosophila, owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase (cpes)-null mutants and fail to encapsulate the neuronal cell bodies in the Drosophila neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in cpes mutants and leads to the PSE phenotype.


Assuntos
Córtex Cerebral/enzimologia , Proteínas de Drosophila/genética , Epilepsia Reflexa/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neuroglia/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Animais , Animais Geneticamente Modificados , Membrana Celular/enzimologia , Córtex Cerebral/citologia , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Masculino , Mutação , Neuroglia/citologia , Neurônios/citologia , Neurônios/enzimologia , Esfingomielinas/metabolismo
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209132

RESUMO

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Assuntos
Neoplasias/imunologia , Óxido Nítrico/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/patologia
7.
Br J Cancer ; 123(7): 1089-1100, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641865

RESUMO

BACKGROUND: Radiotherapy enhances innate and adaptive anti-tumour immunity. It is unclear whether this effect may be harnessed by combining immunotherapy with radiotherapy fractions used to treat prostate cancer. We investigated tumour immune microenvironment responses of pre-clinical prostate cancer models to radiotherapy. Having defined this landscape, we tested whether radiotherapy-induced tumour growth delay could be enhanced with anti-PD-L1. METHODS: Hypofractionated radiotherapy was delivered to TRAMP-C1 and MyC-CaP flank allografts. Tumour growth delay, tumour immune microenvironment flow-cytometry, and immune gene expression were analysed. TRAMP-C1 allografts were then treated with 3 × 5 Gy ± anti-PD-L1. RESULTS: 3 × 5 Gy caused tumour growth delay in TRAMP-C1 and MyC-CaP. Tumour immune microenvironment changes in TRAMP-C1 at 7 days post-radiotherapy included increased tumour-associated macrophages and dendritic cells and upregulation of PD-1/PD-L1, CD8+ T-cell, dendritic cell, and regulatory T-cell genes. At tumour regrowth post-3 × 5 Gy the tumour immune microenvironment flow-cytometry was similar to control tumours, however CD8+, natural killer and dendritic cell gene transcripts were reduced. PD-L1 inhibition plus 3 × 5 Gy in TRAMP-C1 did not enhance tumour growth delay versus monotherapy. CONCLUSION: 3 × 5 Gy hypofractionated radiotherapy can result in tumour growth delay and immune cell changes in allograft prostate cancer models. Adjuncts beyond immunomodulation may be necessary to improve the radiotherapy-induced anti-tumour response.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias da Próstata/terapia , Hipofracionamento da Dose de Radiação , Microambiente Tumoral , Animais , Antígeno B7-H1/análise , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/análise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia
8.
Proc Natl Acad Sci U S A ; 114(49): 13030-13035, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29087320

RESUMO

Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER-) and triple-negative breast cancer (TNBC), nitric oxide synthase-2 (NOS2) and cyclooxygenase-2 (COX2) have been described as independent predictors of disease outcome. We further explore these findings by investigating the impact of their coexpression on breast cancer survival. Elevated coexpression of NOS2/COX2 proteins is a strong predictor of poor survival among ER- patients (hazard ratio: 21). Furthermore, we found that the key products of NOS2 and COX2, NO and prostaglandin E2 (PGE2), respectively, promote feed-forward NOS2/COX2 crosstalk in both MDA-MB-468 (basal-like) and MDA-MB-231 (mesenchymal-like) TNBC cell lines in which NO induced COX2 and PGE2 induced NOS2 proteins. COX2 induction by NO involved TRAF2 activation that occurred in a TNFα-dependent manner in MDA-MB-468 cells. In contrast, NO-mediated TRAF2 activation in the more aggressive MDA-MB-231 cells was TNFα independent but involved the endoplasmic reticulum stress response. Inhibition of NOS2 and COX2 using amino-guanidine and aspirin/indomethacin yielded an additive reduction in the growth of MDA-MB-231 tumor xenografts. These findings support a role of NOS2/COX2 crosstalk during disease progression of aggressive cancer phenotypes and offer insight into therapeutic applications for better survival of patients with ER- and TNBC disease.


Assuntos
Neoplasias da Mama/genética , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica , Óxido Nítrico Sintase Tipo II/genética , Receptores de Estrogênio/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Aspirina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Guanidinas/farmacologia , Humanos , Indometacina/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Receptores de Estrogênio/deficiência , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Chembiochem ; 20(3): 360-365, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358041

RESUMO

Dysregulated metabolism can fuel cancer by altering the production of bioenergetic building blocks and directly stimulating oncogenic gene-expression programs. However, relatively few optical methods for the direct study of metabolites in cells exist. To address this need and facilitate new approaches to cancer treatment and diagnosis, herein we report an optimized chemical approach to detect the oncometabolite fumarate. Our strategy employs diaryl tetrazoles as cell-permeable photoinducible precursors to nitrileimines. Uncaging these species in cells and cell extracts enables them to undergo 1,3-dipolar cycloadditions with endogenous dipolarophile metabolites such as fumarate to form pyrazoline cycloadducts that can be readily detected by their intrinsic fluorescence. The ability to photolytically uncage diaryl tetrazoles provides greatly improved sensitivity relative to previous methods, and enables the facile detection of dysregulated fumarate metabolism through biochemical activity assays, intracellular imaging, and flow cytometry. Our studies showcase an intersection of bioorthogonal chemistry and metabolite reactivity that can be applied for biological profiling, imaging, and diagnostics.


Assuntos
Fluorescência , Fumaratos/análise , Fumaratos/efeitos da radiação , Linhagem Celular , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Fumaratos/metabolismo , Humanos , Microscopia Confocal , Estrutura Molecular , Imagem Óptica , Tetrazóis/química
10.
Blood ; 128(17): 2135-2143, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27557945

RESUMO

Cell motility, division, and structural integrity depend on dynamic remodeling of the cellular cytoskeleton, which is regulated in part by actin polymerization and depolymerization. In 3 families, we identified 4 children with recurrent infections and varying clinical manifestations including mild neutropenia, impaired wound healing, severe stomatitis with oral stenosis, and death. All patients studied had similar distinctive neutrophil herniation of the nuclear lobes and agranular regions within the cytosol. Chemotaxis and chemokinesis were markedly impaired, but staphylococcal killing was normal, and neutrophil oxidative burst was increased both basally and on stimulation. Neutrophil spreading on glass and cell polarization were also impaired. Neutrophil F-actin was elevated fourfold, suggesting an abnormality in F-actin regulation. Two-dimensional differential in-gel electrophoresis identified abnormal actin-interacting protein 1 (Aip1), encoded by WDR1, in patient samples. Biallelic mutations in WDR1 affecting distinct antiparallel ß-strands of Aip1 were identified in all patients. It has been previously reported that Aip1 regulates cofilin-mediated actin depolymerization, which is required for normal neutrophil function. Heterozygous mutations in clinically normal relatives confirmed that WDR1 deficiency is autosomal recessive. Allogeneic stem cell transplantation corrected the immunologic defect in 1 patient. Mutations in WDR1 affect neutrophil morphology, motility, and function, causing a novel primary immunodeficiency.


Assuntos
Citoesqueleto de Actina/patologia , Síndromes de Imunodeficiência/patologia , Transtornos Leucocíticos/genética , Proteínas dos Microfilamentos/genética , Neutrófilos/patologia , Criança , Eletroforese em Gel Bidimensional , Feminino , Predisposição Genética para Doença , Humanos , Immunoblotting , Síndromes de Imunodeficiência/imunologia , Transtornos Leucocíticos/imunologia , Transtornos Leucocíticos/patologia , Masculino , Espectrometria de Massas , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/imunologia , Microscopia Confocal , Mutação , Neutrófilos/imunologia , Linhagem
11.
J Immunol ; 196(3): 1081-90, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26700766

RESUMO

Retinoic acids, which are metabolites of vitamin A, have been shown to be involved in multiple T cell effector responses through their binding to the retinoic acid receptor, a ligand-activated transcription factor. Because the molecular mechanism of regulation by retinoic acid is still not fully uncovered, we investigated the gene expression profile of all-trans retinoic acid (ATRA)-treated human CD4(+) T cells. Leucine zipper transcription factor-like 1 (LZTFL1) was upregulated by ATRA in a dose- and time-dependent manner. The expression of LZTFL1 depended on both ATRA and TCR signaling. LZTFL1 accumulated in the plasma membrane compartment of human CD4(+) T cells, and, during immunological synapse formation, it transiently redistributed to the T cell and APC contact zone, indicating its role in T cell activation. Live-cell imaging demonstrates that at the initial stage of immunological synapse formation, LZTFL1 is concentrated at the APC contact site, and, during later stages, it relocates to the distal pole. Knockdown of LZTFL1 reduced the basal- and ATRA-induced levels of IL-5 in CD4(+) T cells, and overexpression of LZTFL1 enhanced the TCR-mediated NFAT signaling, suggesting that LZTFL1 is an important regulator of ATRA-induced T cell response. Together, these data indicate that LZTFL1 modulates T cell activation and IL-5 levels.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação Linfocitária/imunologia , Fatores de Transcrição/imunologia , Tretinoína/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/imunologia , Humanos , Immunoblotting , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/imunologia , Interleucina-5/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Microscopia Confocal , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Ativação Transcricional/efeitos dos fármacos , Transcriptoma , Transfecção , Regulação para Cima
12.
Brain Inj ; 32(3): 350-362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29283279

RESUMO

BACKGROUND: Children and adolescents with chronic memory impairment may develop coping strategies that enable functioning, yet these often remain undetectable using traditional psychometric measures. Personalized intervention studies that promote the use of such strategies designed specifically for use by this young cohort are scarce. OBJECTIVE: To investigate the effect of a novel virtual reality peer-delivered memory intervention on the everyday functioning and well-being of SE, a 17-year-old female with a history of chronic verbal memory issues, impaired autobiographical event recall and elevated mood symptoms. RESEARCH DESIGN: A single-case ABA experimental design study was used to assess change. METHODS: Following initial baseline assessment using objective neuropsychological and subjective functional questionnaires and intervention training, case SE used the intervention daily for 3 weeks before repeating key outcome measures. RESULTS: Using non-overlap of all pairs and qualitative feedback analysis, the results revealed a significant increase in event recall and self-reported positive changes to levels of everyday functioning. CONCLUSION: Supporting autobiographical event recall and prospective memory via a virtual peer-delivered intervention may lead to reduction in cognitive load, and benefit overall well-being and everyday functioning.


Assuntos
Transtornos da Memória/reabilitação , Reabilitação Psiquiátrica/métodos , Telerreabilitação/métodos , Atividades Cotidianas , Adolescente , Doença Crônica , Feminino , Humanos , Transtornos da Memória/diagnóstico por imagem , Rememoração Mental , Neuroimagem , Testes Neuropsicológicos , Grupo Associado , Autorrelato , Inquéritos e Questionários
13.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27799332

RESUMO

Burkholderia mallei and B. pseudomallei cause glanders and melioidosis, respectively, in humans and animals. A hallmark of pathogenesis is the formation of granulomas containing multinucleated giant cells (MNGCs) and cell death. These processes depend on type 6 secretion system 1 (T6SS-1), which is required for virulence in animals. We examined the cell biology of MNGC formation and cell death. We found that chloroquine diphosphate (CLQ), an antimalarial drug, inhibits Burkholderia growth, phagosomal escape, and subsequent MNGC formation. This depends on CLQ's ability to neutralize the acid pH because other alkalinizing compounds similarly inhibit escape and MNGC formation. CLQ inhibits bacterial virulence protein expression because T6SS-1 and some effectors of type 3 secretion system 3 (T3SS-3), which is also required for virulence, are expressed at acid pH. We show that acid pH upregulates the expression of Hcp1 of T6SS-1 and TssM, a protein coregulated with T6SS-1. Finally, we demonstrate that CLQ treatment of Burkholderia-infected Madagascar hissing cockroaches (HCs) increases their survival. This study highlights the multiple mechanisms by which CLQ inhibits growth and virulence and suggests that CLQ be further tested and considered, in conjunction with antibiotic use, for the treatment of diseases caused by Burkholderia.


Assuntos
Antiácidos/farmacologia , Burkholderia mallei/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Cloroquina/farmacologia , Células Gigantes/efeitos dos fármacos , Sistemas de Secreção Tipo VI/efeitos dos fármacos , Virulência/efeitos dos fármacos , Animais , Proteínas de Bactérias/metabolismo , Burkholderia mallei/metabolismo , Burkholderia pseudomallei/metabolismo , Linhagem Celular , Mormo/tratamento farmacológico , Mormo/microbiologia , Concentração de Íons de Hidrogênio , Melioidose/tratamento farmacológico , Melioidose/microbiologia , Camundongos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Fatores de Virulência/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(48): E5205-13, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404326

RESUMO

Full-length HIV-1 RNA plays a central role in viral replication by serving as the mRNA for essential viral proteins and as the genome packaged into infectious virions. Proper RNA trafficking is required for the functions of RNA and its encoded proteins; however, the mechanism by which HIV-1 RNA is transported within the cytoplasm remains undefined. Full-length HIV-1 RNA transport is further complicated when group-specific antigen (Gag) protein is expressed, because a significant portion of HIV-1 RNA may be transported as Gag-RNA complexes, whose properties could differ greatly from Gag-free RNA. In this report, we visualized HIV-1 RNA and monitored its movement in the cytoplasm by using single-molecule tracking. We observed that most of the HIV-1 RNA molecules move in a nondirectional, random-walk manner, which does not require an intact cytoskeletal structure, and that the mean-squared distance traveled by the RNA increases linearly with time, indicative of diffusive movement. We also observed that a single HIV-1 RNA molecule can move at various speeds when traveling through the cytoplasm, indicating that its movement is strongly affected by the immediate environment. To examine the effect of Gag protein on HIV-1 RNA transport, we analyzed the cytoplasmic HIV-1 RNA movement in the presence of sufficient Gag for virion assembly and found that HIV-1 RNA is still transported by diffusion with mobility similar to the mobility of RNAs unable to express functional Gag. These studies define a major mechanism of HIV-1 gene expression and resolve the long-standing question of how the RNA genome is transported to the assembly site.


Assuntos
Citoplasma/metabolismo , HIV-1/genética , RNA Viral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocalasina D/farmacologia , Dinaminas/genética , Dinaminas/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Nocodazol/farmacologia , Transporte de RNA , RNA Viral/genética , Imagem com Lapso de Tempo , Moduladores de Tubulina/farmacologia , Montagem de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
15.
Biochim Biophys Acta ; 1853(1): 222-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447673

RESUMO

Valosin-containing protein (VCP or p97), a member of the AAA family (ATPases associated with diverse cellular activities), plays a key role in many important cellular activities. A genetic deficiency of VCP can cause inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD). Previous studies showed that the VCP N domain is essential for the regulation of nuclear entry of VCP. Here we report that IBMPFD mutations, which are mainly located in the N domain, suppress the nuclear entry of VCP. Moreover, the peptide sequence G780AGPSQ in the C-terminal region regulates the retention of VCP in the nucleus. A mutant lacking this sequence can increase the nuclear distribution of IBMPFD VCP, suggesting that this sequence is a potential molecular target for correcting the deficient nucleocytoplasmic shuttling of IBMPFD VCP proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Demência Frontotemporal/genética , Células HEK293 , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Miosite de Corpos de Inclusão/genética , Osteíte Deformante/genética , Estrutura Terciária de Proteína , Proteína com Valosina
16.
J Virol ; 89(21): 10832-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26292321

RESUMO

UNLABELLED: To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. IMPORTANCE: Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas most HIV-1 RNAs stayed at the plasma membrane for 15 to 60 min in the presence of Gag. Our results also demonstrated that only a small proportion of the HIV-1 RNAs, approximately 1/10 to 1/3 of the RNAs that reached the plasma membrane, was incorporated into viral protein complexes. These studies determined the dynamics of HIV-1 RNA on the plasma membrane and obtained temporal information on RNA-Gag interactions that lead to RNA encapsidation.


Assuntos
Membrana Celular/metabolismo , HIV-1/genética , HIV-1/fisiologia , RNA Viral/metabolismo , Montagem de Vírus/fisiologia , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
17.
J Immunol ; 193(1): 56-67, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860189

RESUMO

TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These pre-existing microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters linker for activation of T cells and growth factor receptor-bound protein 2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could explain, in part, the rapid kinetics with which TCR signal transduction occurs.


Assuntos
Antígenos Comuns de Leucócito/imunologia , Microdomínios da Membrana/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Antígenos Comuns de Leucócito/genética , Microdomínios da Membrana/genética , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética
18.
Traffic ; 14(1): 57-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22998189

RESUMO

Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be the sites for virus-like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1-less strain expressing galactose-inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease (PR) or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense-mediated decay (NMD) and the processing body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export and localization into cytoplasmic foci.


Assuntos
Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Retroelementos/genética , Retroviridae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/genética , Citoplasma/metabolismo , Exossomos/metabolismo , Mutação da Fase de Leitura , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , Deleção de Genes , Estabilidade de RNA , Transporte de RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Cytometry A ; 85(6): 512-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24515854

RESUMO

Actin fibers (F-actin) control the shape and internal organization of cells, and generate force. It has been long appreciated that these functions are tightly coupled, and in some cases drive cell behavior and cell fate. The distribution and dynamics of F-actin is different in cancer versus normal cells and in response to small molecules, including actin-targeting natural products and anticancer drugs. Therefore, quantifying actin structural changes from high resolution fluorescence micrographs is necessary for further understanding actin cytoskeleton dynamics and phenotypic consequences of drug interactions on cells. We applied an artificial neural network algorithm, which used image intensity and anisotropy measurements, to quantitatively classify F-actin subcellular features into actin along the edges of cells, actin at the protrusions of cells, internal fibers and punctate signals. The algorithm measured significant increase in F-actin at cell edges with concomitant decrease in internal punctate actin in astrocytoma cells lacking functional neurofibromin and p53 when treated with three structurally-distinct anticancer small molecules: OSW1, Schweinfurthin A (SA) and a synthetic marine compound 23'-dehydroxycephalostatin 1. Distinctly different changes were measured in cells treated with the actin inhibitor cytochalasin B. These measurements support published reports that SA acts on F-actin in NF1(-/-) neurofibromin deficient cancer cells through changes in Rho signaling. Quantitative pattern analysis of cells has wide applications for understanding mechanisms of small molecules, because many anti-cancer drugs directly or indirectly target cytoskeletal proteins. Furthermore, quantitative information about the actin cytoskeleton may make it possible to further understand cell fate decisions using mathematically testable models.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Astrocitoma/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/ultraestrutura , Astrocitoma/patologia , Linhagem Celular Tumoral , Estruturas Celulares/ultraestrutura , Humanos , Redes Neurais de Computação , Transdução de Sinais/genética
20.
JCI Insight ; 9(12)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38912586

RESUMO

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.


Assuntos
Proteínas de Membrana , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Proteínas de Membrana/metabolismo , Camundongos , Feminino , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Indometacina/farmacologia , Indometacina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA