Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 13(28): 12327-12341, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254598

RESUMO

The integration of graphene, and more broadly two-dimensional materials, into devices and hybrid materials often requires the deposition of thin films on their usually inert surface. As a result, strategies for the introduction of surface reactive sites have been developed but currently pose a dilemma between robustness and preservation of the graphene properties. A method is reported here for covalently modifying graphitic surfaces, introducing functional groups that act as reactive sites for the growth of high quality dielectric layers. Aryl diazonium species containing tri-methoxy groups are covalently bonded (grafted) to highly oriented pyrolytic graphite (HOPG) and graphene, acting as seeding species for atomic layer deposition (ALD) of Al2O3, a high-κ dielectric material. A smooth and uniform dielectric film growth is confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurements. Raman spectroscopy showed that the aryl groups gradually detach from the graphitic surface during the Al2O3 ALD process at 150 °C, with the surface reverting back to the original sp2-hybridized state and without damaging the dielectric layer. Thus, the grafted aryl groups can act as a sacrificial seeding layer after healing the defects of the graphitic surface with annealing treatment.

2.
Nanoscale ; 9(30): 10869-10879, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28731082

RESUMO

Despite the fact that two-dimensional MoS2 films continue to be of interest for novel device concepts and beyond silicon technologies, there is still a lack of understanding on the carrier injection at metal/MoS2 interface and effective mitigation of the contact resistance. In this work, we develop a semi-classical model to identify the main mechanisms and trajectories for carrier injection at MoS2 contacts. The proposed model successfully captures the experimentally observed contact behavior and the overall electrical behavior of MoS2 field effect transistors. Using this model, we evaluate the injection trajectories for different MoS2 thicknesses and bias conditions. We find for multilayer (>2) MoS2, the contribution of injection at the contact edge and injection under the contact increase with lateral and perpendicular fields, respectively. Furthermore, we identify that the carriers are predominantly injected at the edge of the contact metal for monolayer and bilayer MoS2. Following these insights, we have found that the transmission line model could significantly overestimate the transfer length and hence the contact resistivity for monolayer and bilayer MoS2. Finally, we evaluate different contact strategies to improve the contact resistance considering the limiting injection trajectory.

3.
Nanoscale ; 9(1): 258-265, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27906404

RESUMO

Despite rapid progress in 2D molybdenum disulfide (MoS2) research in recent years, MoS2 field-effect transistors (FETs) still suffer from a high metal-to-MoS2 contact resistance and low intrinsic mobility, which are major hindrances to their future application. We report an efficient technique to dope thin-film MoS2 FETs using a poly(vinyl-alcohol) (PVA) polymeric coating. This results in a reduction of the contact resistance by up to 30% as well as a reduction in the channel resistance to 20 kΩ sq-1. Using a dehydration process, we were able to effectively control the surface interactions between MoS2 and the more electropositive hydroxyl groups (-OH) of PVA, which provided a controllable and yet reversible increase in the charge carrier density to a value of 8.0 × 1012 cm-2. The non-covalent, thus non-destructive, PVA doping of MoS2 increases the carrier concentration without degrading the mobility, which shows a monotonic increase while enhancing the doping effect. The PVA doping technique is then exploited to create heavily doped access regions to the intrinsic MoS2 channel, which yields 200% increase of the ON-state source-drain current. This establishes PVA doping as an effective approach to enhance the transport properties of MoS2 FETs for a variety of applications.

4.
Nanoscale ; 8(48): 20017-20026, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27883146

RESUMO

One current key challenge in graphene research is to tune its charge carrier concentration, i.e., p- and n-type doping of graphene. An attractive approach in this respect is offered by controlled doping via well-ordered self-assembled networks physisorbed on the graphene surface. We report on tunable n-type doping of graphene using self-assembled networks of alkyl-amines that have varying chain lengths. The doping magnitude is modulated by controlling the density of the strong n-type doping amine groups on the surface. As revealed by scanning tunneling and atomic force microscopy, this density is governed by the length of the alkyl chain which acts as a spacer within the self-assembled network. The modulation of the doping magnitude depending on the chain length was demonstrated using Raman spectroscopy and electrical measurements on graphene field effect devices. This supramolecular functionalization approach offers new possibilities for controlling the properties of graphene and other two-dimensional materials at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA