Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurogenetics ; 24(3): 209-213, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341843

RESUMO

Primary familial brain calcification (PFBC; formerly Fahr's disease) and early-onset Alzheimer's disease (EOAD) may share partially overlapping pathogenic principles. Although the heterozygous loss-of-function mutation c.1523 + 1G > T in the PFBC-linked gene SLC20A2 was detected in a patient with asymmetric tremor, early-onset dementia, and brain calcifications, CSF ß-amyloid parameters and FBB-PET suggested cortical ß-amyloid pathology. Genetic re-analysis of exome sequences revealed the probably pathogenic missense mutation c.235G > A/p.A79T in PSEN1. The SLC20A2 mutation segregated with mild calcifications in two children younger than 30 years. We thus describe the stochastically extremely unlikely co-morbidity of genetic PFBC and genetic EOAD. The clinical syndromes pointed to additive rather than synergistic effects of the two mutations. MRI data revealed the formation of PFBC calcifications decades before the probable onset of the disease. Our report furthermore exemplifies the value of neuropsychology and amyloid PET for differential diagnosis.


Assuntos
Doença de Alzheimer , Doenças dos Gânglios da Base , Encefalopatias , Criança , Humanos , Doença de Alzheimer/genética , Mutação , Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Morbidade , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Encefalopatias/patologia , Presenilina-1/genética
2.
Metabolites ; 12(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050165

RESUMO

Genome-scale metabolic models are frequently used in computational biology. They offer an integrative view on the metabolic network of an organism without the need to know kinetic information in detail. However, the huge solution space which comes with the analysis of genome-scale models by using, e.g., Flux Balance Analysis (FBA) poses a problem, since it is hard to thoroughly investigate and often only an arbitrarily selected individual flux distribution is discussed as an outcome of FBA. Here, we introduce a new approach to inspect the solution space and we compare it with other approaches, namely Flux Variability Analysis (FVA) and CoPE-FBA, using several different genome-scale models of lactic acid bacteria. We examine the extent to which different types of experimental data limit the solution space and how the robustness of the system increases as a result. We find that our new approach to inspect the solution space is a good complementary method that offers additional insights into the variance of biological phenotypes and can help to prevent wrong conclusions in the analysis of FBA results.

3.
Microbiol Spectr ; 10(2): e0240021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234500

RESUMO

Lactic acid bacteria (LAB) play a significant role in biotechnology, e.g., food industry and also in human health. Many LAB genera have developed a multidrug resistance in the past few years, causing a serious problem in controlling hospital germs worldwide. Enterococcus faecalis accounts for a large part of the human infections caused by LABs. Therefore, studying its adaptive metabolism under various environmental conditions is particularly important to promote the development of new therapeutic approaches. In this study, we investigated the effect of glutamine auxotrophy (ΔglnA mutant) on metabolic and proteomic adaptations of E. faecalis in response to a changing pH in its environment. Changing pH values are part of the organism's natural environment in the human body and play a role in the food industry. We compared the results with those of the wildtype. Using a genome-scale metabolic model constrained by metabolic and proteomic data, our integrative method allows us to understand the bigger picture of the adaptation strategies of this bacterium. The study showed that energy demand is the decisive factor in adapting to a new environmental pH. The energy demand of the mutant was higher at all conditions. It has been reported that ΔglnA mutants of bacteria are energetically less effective. With the aid of our data and model we are able to explain this phenomenon as a consequence of a failure to regulate glutamine uptake and the costs for the import of glutamine and the export of ammonium. Methodologically, it became apparent that taking into account the nonspecificity of amino acid transporters is important for reproducing metabolic changes with genome-scale models because it affects energy balance. IMPORTANCE The integration of new pH-dependent experimental data on metabolic uptake and release fluxes, as well as of proteome data with a genome-scale computational model of a glutamine synthetase mutant of E. faecalis is used and compared with those of the wildtype to understand why glutamine auxotrophy results in a less efficient metabolism and how-in comparison with the wildtype-the glutamine synthetase knockout impacts metabolic adjustments during acidification or simply exposure to lower pH. We show that forced glutamine auxotrophy causes more energy demand and that this is likely due to a disregulated glutamine uptake. Proteome changes during acidification observed for the mutant resemble those of the wildtype with the exception of glycolysis-related genes, as the mutant is already energetically stressed at a higher pH and the respective proteome changes were in effect.


Assuntos
Enterococcus faecalis , Glutamato-Amônia Ligase , Enterococcus faecalis/genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Humanos , Proteoma/metabolismo , Proteoma/farmacologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA