Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(4): 3591-3602, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37185758

RESUMO

Numerous studies have considered galectin-3 or Glycogen synthase kinase 3 beta (GSK3B) as a potential prognosis marker for various cancers. However, the correlation between the protein expression of galectin-3/GSK3B and the clinical parameters of astrocytoma has not been reported. This study aims to validate the correlation between the clinical outcomes and protein expression of galectin-3/GSK3B in astrocytoma. Immunohistochemistry staining was performed to detect galectin-3/GSK3B protein expression in patients with astrocytoma. The Chi-square test, Kaplan-Meier evaluation, and Cox regression analysis were used to determine the correlation between clinical parameters and galectin-3/GSK3B expression. Cell proliferation, invasion, and migration were compared between a non-siRNA group and a galectin-3/GSK3B siRNA group. Protein expression in galectin-3 or GSK3B siRNA-treated cells was evaluated using western blotting. Galectin-3 and GSK3B protein expression were significantly positively correlated with the World Health Organization (WHO) astrocytoma grade and overall survival time. Multivariate analysis revealed that WHO grade, galectin-3 expression, and GSK3B expression were independent prognostic factors for astrocytoma. Galectin-3 or GSK3B downregulation induced apoptosis and decreased cell numbers, migration, and invasion. siRNA-mediated gene silencing of galectin-3 resulted in the downregulation of Ki-67, cyclin D1, VEGF, GSK3B, p-GSK3B Ser9 (p-GSK3B S9), and ß-catenin. In contrast, GSK3B knockdown only decreased Ki-67, VEGF, p-GSK3B S9, and ß-catenin protein expression but did not affect cyclin D1 and galectin-3 protein expression. The siRNA results indicated that GSK3B is downstream of the galectin-3 gene. These data support that galectin-3 mediated tumor progression by upregulating GSK3B and ß-catenin protein expression in glioblastoma. Therefore, galectin-3 and GSK3B are potential prognostic markers, and their genes may be considered to be anticancer targets for astrocytoma therapy.

2.
Cell Commun Signal ; 20(1): 200, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575468

RESUMO

BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.


Assuntos
Apoptose , Neoplasias Colorretais , Inibidores de Histona Desacetilases , Temozolomida , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Temozolomida/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt , Inibidores de Histona Desacetilases/farmacologia , Células HT29
3.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072831

RESUMO

Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of ß-catenin was reversed by proteasome inhibitor via the ß-catenin/ GSK3ß signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the ß-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/tratamento farmacológico , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Repressoras/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Temozolomida/efeitos adversos , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1046-1059, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29694914

RESUMO

GSK3ß interacting protein (GSKIP) is a naturally occurring negative regulator of GSK3ß and retains both the Protein Kinase A Regulatory subunit binding (PKA-RII) domain and GSK3ß interacting domain. Of these two domains, we found that PKA-RII is required for forming a working complex comprising PKA/GSKIP/GSK3ß/Drp1 to influence phosphorylation of Drp1 Ser637. In this study, bioinformatics and experimental explorations re-analyzing GSKIP's biofunctions suggest that the evolutionarily conserved Domain of Unknown Function (DUF727) is an ancestral prototype of GSKIP in prokaryotes, and acquired the C-terminal GSK3ß binding site (tail) in invertebrates except for Saccharomyces spp., after which the N-terminal PKA-RII binding region (head) evolved in vertebrates. These two regions mutually influence each other and modulate GSKIP binding to GSK3ß in yeast two-hybrid assays and co-immunoprecipitation. Molecular modeling showed that mammalian GSKIP could form a dimer through the L130 residue (GSK3ß binding site) rather than V41/L45 residues. In contrast, V41/L45P mutant facilitated a gain-of-function effect on GSKIP dimerization, further influencing binding behavior to GSK3ß compared to GSKIP wild-type (wt). The V41/L45 residues are not only responsible for PKA RII binding that controls GSK3ß activity, but also affect dimerization of GSKIP monomer, with net results of gain-of-function in GSKIP-GSK3ß interaction. In addition to its reported role in modulating Drp1, Ser637 phosphorylation caused mitochondrial elongation; we postulated that GSKIP might be involved in the Wnt signaling pathway as a scavenger to recruit GSK3ß away from the ß-catenin destruction complex and as a competitor to compete for GSK3ß binding, resulting in accumulation of S675 phosphorylated ß-catenin.


Assuntos
Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt , Sítios de Ligação , Biologia Computacional , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas , Evolução Molecular , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Fosforilação , Filogenia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteínas Repressoras/genética , Serina/química , Técnicas do Sistema de Duplo-Híbrido
5.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678307

RESUMO

Thioridazine (THD) is a common phenothiazine antipsychotic drug reported to suppress growth in several types of cancer cells. We previously showed that THD acts as an antiglioblastoma and anticancer stem-like cell agent. However, the signaling pathway underlying autophagy and apoptosis induction remains unclear. THD treatment significantly induced autophagy with upregulated AMPK activity and engendered cell death with increased sub-G1 in glioblastoma multiform (GBM) cell lines. Notably, through whole gene expression screening with THD treatment, frizzled (Fzd) proteins, a family of G-protein-coupled receptors, were found, suggesting the participation of Wnt/ß-catenin signaling. After THD treatment, Fzd-1 and GSK3ß-S9 phosphorylation (inactivated form) was reduced to promote ß-catenin degradation, which attenuated P62 inhibition. The autophagy marker LC3-II markedly increased when P62 was released from ß-catenin inhibition. Additionally, the P62-dependent caspase-8 activation that induced P53-independent apoptosis was confirmed by inhibiting T-cell factor/ß-catenin and autophagy flux. Moreover, treatment with THD combined with temozolomide (TMZ) engendered increased LC3-II expression and caspase-3 activity, indicating promising drug synergism. In conclusion, THD induces autophagy in GBM cells by not only upregulating AMPK activity, but also enhancing P62-mediated autophagy and apoptosis through Wnt/ß-catenin signaling. Therefore, THD is a potential alternative therapeutic agent for drug repositioning in GBM.


Assuntos
Autofagia/efeitos dos fármacos , Cateninas/metabolismo , Glioma/metabolismo , Tioridazina/farmacologia , Apoptose/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
6.
Can J Neurol Sci ; 44(5): 607-610, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28446265

RESUMO

We present the case of a 2-year-old boy with progressive left-sided weakness and a cranial magnetic resonance imaging (MRI) scan showing a lesion with a cystic component in the right thalamus and basal ganglia. The lesion was subtotally resected and diagnosed as a pilocytic astrocytoma by histopathology. Tumor seeding along the surgical tract was seen on MRI 16 days and 10 weeks after surgery. The patient received vincristine and carboplatin, and MRI performed 4 months after chemotherapy revealed no additional or residual lesions. This case illustrated that a World Health Organization grade I astrocytoma could disseminate along the surgical tract.


Assuntos
Astrocitoma/cirurgia , Neoplasias Encefálicas/cirurgia , Neoplasias Meníngeas/cirurgia , Meninges/cirurgia , Astrocitoma/diagnóstico , Neoplasias Encefálicas/diagnóstico , Carboplatina/uso terapêutico , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patologia , Meninges/patologia , Vincristina/uso terapêutico , Organização Mundial da Saúde
7.
Biochim Biophys Acta ; 1853(8): 1796-807, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25920809

RESUMO

GSK3ß binding of GSKIP affects neurite outgrowth, but the physiological significance of PKA binding to GSKIP remains to be determined. We hypothesized that GSKIP and GSK3ß mediate cAMP/PKA/Drp1 axis signaling and modulate mitochondrial morphology by forming a working complex comprising PKA/GSKIP/GSK3ß/Drp1. We demonstrated that GSKIP wild-type overexpression increased phosphorylation of Drp1 S637 by 7-8-fold compared to PKA kinase-inactive mutants (V41/L45) and a GSK3ß binding-defective mutant (L130) under H2O2 and forskolin challenge in HEK293 cells, indicating that not only V41/L45, but also L130 may be involved in Drp1-associated protection of GSKIP. Interestingly, silencing either GSKIP or GSK3ß but not GSK3α resulted in a dramatic decrease in Drp1 S637 phosphorylation, revealing that both GSKIP and GSK3ß are required in this novel PKA/GSKIP/GSK3ß/Drp1 complex. Moreover, overexpressed kinase-dead GSK3ß-K85R, which retains the capacity to bind GSKIP, but not K85M which shows total loss of GSKIP-binding, has a higher Drp1 S637 phosphorylation similar to the GSKIP wt overexpression group, indicating that GSK3ß recruits Drp1 by anchoring rather than in a kinase role. With further overexpression of either V41/L45P or the L130P GSKIP mutant, the elongated mitochondrial phenotype was lost; however, ectopically expressed Drp1 S637D, a phosphomimetic mutant, but not S637A, a non-phosphorylated mutant, restored the elongated mitochondrial morphology, indicating that Drp1 is a downstream effector of direct PKA signaling and possibly has an indirect GSKIP function involved in the cAMP/PKA/Drp1 signaling axis. Collectively, our data revealed that both GSKIP and GSK3ß function as anchoring proteins in the cAMP/PKA/Drp1 signaling axis modulating Drp1 phosphorylation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Repressoras/fisiologia , Células Cultivadas , Dinaminas , GTP Fosfo-Hidrolases/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Fosforilação , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética
8.
Cytokine ; 61(2): 413-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23260996

RESUMO

Transforming growth factor-beta 1 (TGF-ß1) has been reported to be a possible marker for a number of tumors, including brain tumors. The aim of this study was to measure the plasma levels of TGF-ß1 in patients with low- and high-grade astrocytomas before and after surgery. This prospective study included 14 patients with low-grade astrocytomas and 25 with high-grade astrocytomas who underwent tumor removal and 13 controls (patients who underwent cranioplasty for skull bone defects). Plasma levels of TGF-ß1 were measured in all subjects using enzyme-linked immunosorbent assay (ELISA). Receiver operating characteristic (ROC) curve analysis showed that when the level of TGF-ß1 before tumor removal was ≥ 2.52 ng/ml, astrocytoma was predicted with a sensitivity of 94.9% and specificity of 100%. The mean plasma level of TGF-ß1 in both the low-grade and high-grade astrocytoma groups significantly decreased after tumor removal (p<0.05); there was no significant change in TGF-ß1 plasma level of the controls following surgery. Patients with high-grade astrocytomas had a significantly higher mortality rate than patients with low-grade astrocytomas (p=0.019) and significantly shorter survival (p=0.008). A positive correlation between TGF-ß1 level after tumor removal and tumor volume was only found in the high-grade astrocytoma group (γ=0.597, p=0.002). The findings show that plasma TGF-ß1 level was increased in patients with low-grade and high-grade astrocytoma, and that the levels significantly decreased after tumor removal in both groups. The results provide additional evidence that TGF-ß1 might be useful as a tumor marker for astrocytomas.


Assuntos
Astrocitoma/sangue , Astrocitoma/cirurgia , Fator de Crescimento Transformador beta1/sangue , Adolescente , Adulto , Idoso , Astrocitoma/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Curva ROC , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
9.
Childs Nerv Syst ; 29(11): 2051-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23632690

RESUMO

PURPOSE: The prognosis of children with low-grade cerebellar astrocytoma who have partial resection of tumor is largely unpredictable. The purpose of this study was to review the long-term outcome of such patients. METHODS: The medical charts, imaging findings, operative notes, histopathological reports, and survival times of 12 patients with cerebellar astrocytoma were reviewed. RESULTS: Five patients had total resection and seven had partial resection. Nine patients had grade I histology and three patients had grade II. Follow-up duration ranged from 3 to 25 years. Among the seven patients with residual tumor, five had tumor progression, one had arrested tumor growth, and one had spontaneous tumor regression. Five patients with partial resection received radiotherapy and three had malignant transformation of tumor during follow-up. Six patients, including five who had partial resection, underwent a second operation. One patient with partial resection died of pneumonia 23 years after surgery. CONCLUSIONS: Patients with complete tumor resection had a better prognosis than patients with partial resection. For patients with partial resection, we recommend a "wait and see" policy with surveillance using MRI. The phenomenon of arrested tumor growth and spontaneous tumor regression in patients with cerebellar astrocytoma who have subtotal resection warrants further study.


Assuntos
Astrocitoma , Neoplasias Cerebelares , Recidiva Local de Neoplasia , Neoplasia Residual , Procedimentos Neurocirúrgicos/métodos , Adolescente , Astrocitoma/patologia , Astrocitoma/cirurgia , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/cirurgia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Neoplasia Residual/patologia , Neoplasia Residual/cirurgia , Procedimentos Neurocirúrgicos/normas , Prognóstico , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
10.
Cell Cycle ; 22(21-22): 2485-2503, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38053243

RESUMO

Recent study had deepened our knowledge of the mitochondrial dynamics to classify mitochondrial fission into two types. To further clarify the relationship between the two distinct fission machinery and the four major adaptors of Drp1, we propose a model of mechanism elucidating the multiple functions of phospho-Drp1 with its adaptors during cell cycle and providing in-depth insights into the molecular basis and evolutionary implications in depth. The model highlights not only the clustering characteristics of different phospho-Drp1 with respective subsets of mitochondrial pro-fission adaptors but also the correlation, crosstalk and shifting between different clustering of phosphorylated Drp1-adaptors during different key fission situations. Particularly, phospho-Drp1 (Ser616) couples with Mff/MiD51 to exert mitochondrial division and phospho-Drp1 (Ser637) couples with MiD49/Fis1 to execute mitophagy in M-phase. We then apply the model to address the relationship of mitochondrial dynamics to Parkinson's disease (PD) and carcinogenesis. Our proposed model is indeed compatible with current research results and pathological observations, providing promising directions for future treatment design.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Dinaminas/genética , Dinaminas/metabolismo , Divisão Celular , Ciclo Celular , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
11.
J Cell Commun Signal ; 17(3): 1039-1054, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37133713

RESUMO

GSK3ß interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/ß-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3ß/ß-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/ß-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/ß-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-ß-catenin (S675) and ß-catenin (S552) but not phosphor-ß-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.

12.
Cell Cycle ; 21(11): 1153-1165, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35311459

RESUMO

We examined the apoptotic response of two glioblastoma cells, p53 wild type U87 and p53 mutated T98G, to doxorubicin, bortezomib, and vorinostat, which respectively target DNA, 26S proteasome and histone deacetylase, to clarify p53's function in apoptosis. We demonstrated that doxorubicin induced apoptosis in U87 cells but not in T98G cells. The level of p53 was definitively correlated to the extent of DNA damage and apoptosis initiation. Dominant-negative p53 reduced p21 expression, but did not affect doxorubicin-induced apoptosis, so the transcriptional activity of p53 seemed not to participate in doxorubicin-induced apoptosis. However, p53 concentrated into the nucleus during heavy apoptosis. Bortezomib could induce apoptosis in U87 with high sensitivity and T98G cells with low sensitivity. In contrast, vorinostat promoted apoptosis in both U87 and T98G cells and reduced the basal level of p53 in U87 cells, indicating that p53 played no role in the vorinostat-induced apoptosis. To clearly define the role of p53 in bortezomib- and doxorubicin-induced apoptosis, we combined doxorubicin with bortezomib to treat U87 cells to assess this combination's effect on apoptosis and p53 status. Interestingly, the combination of doxorubicin with bortezomib engendered compound stress, resulting in a synergistic outcome for apoptosis in U87 cells. However, the amounts of p53 in the total count and in the nucleus were much lower with the combination than with doxorubicin alone, suggesting that p53 played no role in either the compound stress, doxorubicin-only or bortezomib-induced apoptosis.


Assuntos
Glioblastoma , Apoptose , Bortezomib/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Glioblastoma/genética , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vorinostat/farmacologia
13.
PLoS One ; 17(1): e0262138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051222

RESUMO

We previously revealed the origin of mammalian simple-type glycogen synthase kinase interaction protein (GSKIP), which served as a scavenger and a competitor in the Wnt signaling pathway during evolution. In this study, we investigated the conserved and nonconserved regions of the composite-type GSKIP by utilizing bioinformatics tools, site-directed mutagenesis, and yeast two-hybrid methods. The regions were denoted as the pre-GSK3ß binding site, which is located at the front of GSK3ß-binding sites. Our data demonstrated that clustered mitochondria protein 1 (CLU1), a type of composite-type GSKIP that exists in the mitochondria of all eukaryotic organisms, possesses the protein known as domain of unknown function 727 (DUF727), with a pre-GSK3ß-binding site and a mutant GSK3ß-binding flanking region. Another type of composite-type GSKIP, armadillo repeat containing 4 (ARMC4), which is known for cilium movement in vertebrates, contains an unintegrated DUF727 flanking region with a pre-GSK3ß-binding site (115SPxF118) only. In addition, the sequence of the GSK3ß-binding site in CLU1 revealed that Q126L and V130L were not conserved, differing from the ideal GSK3ß-binding sequence of simple-type GSKIP. We further illustrated two exceptions, namely 70 kilodalton heat shock proteins (Hsp70/DnaK) and Mitofilin in nematodes, that presented an unexpected ideal GSK3ß-binding region with a pre-GSK3ß sequence; this composite-type GSKIP could only occur in vertebrate species. Furthermore, we revealed the importance of the pre-GSK3ß-binding site (118F or 118Y) and various mutant GSK3ß-binding sites of composite-type GSKIP. Collectively, our data suggest that the new composite-type GSKIP starts with a DUF727 domain followed by a pre-GSK3ß-binding site, with the subsequent addition of the GSK3ß-binding site, which plays vital roles for CLU1, Mitofilin, and ARMC4 in mitochondria and Wnt signaling pathways during evolution.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Evolução Molecular , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Ligação Proteica , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/química , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-Híbrido , Via de Sinalização Wnt
14.
Biomolecules ; 11(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805672

RESUMO

Mitochondrial fission and fusion cycles are integrated with cell cycle progression. Here we first re-visited how mitochondrial ETC inhibition disturbed mitosis progression, resulting in multipolar spindles formation in HeLa cells. Inhibitors of ETC complex I (rotenone, ROT) and complex III (antimycin A, AA) decreased the phosphorylation of Plk1 T210 and Aurora A T288 in the mitotic phase (M-phase), especially ROT, affecting the dynamic phosphorylation status of fission protein dynamin-related protein 1 (Drp1) and the Ser637/Ser616 ratio. We then tested whether specific Drp1 inhibitors, Mdivi-1 or Dynasore, affected the dynamic phosphorylation status of Drp1. Similar to the effects of ROT and AA, our results showed that Mdivi-1 but not Dynasore influenced the dynamic phosphorylation status of Ser637 and Ser616 in Drp1, which converged with mitotic kinases (Cdk1, Plk1, Aurora A) and centrosome-associated proteins to significantly accelerate mitotic defects. Moreover, our data also indicated that evoking mito-Drp1-Ser637 by protein kinase A (PKA) rather than Drp1-Ser616 by Cdk1/Cyclin B resulted in mitochondrial fission via the PINK1/Parkin pathway to promote more efficient mitophagy and simultaneously caused multipolar spindles. Collectively, this study is the first to uncover that mito-Drp1-Ser637 by PKA, but not Drp1-Ser616, drives mitophagy to exert multipolar spindles formation during M-phase.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Dinâmica Mitocondrial , Mitofagia , Mitose , Proteínas Quinases/metabolismo , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antimicina A/farmacologia , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Células HeLa , Humanos , Hidrazonas/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinazolinonas/metabolismo , Rotenona/farmacologia , Quinase 1 Polo-Like
15.
Life (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069945

RESUMO

Therapeutic resistance in recurrent glioblastoma multiforme (GBM) after concurrent chemoradiotherapy (CCRT) is a challenging issue. Although standard fractionated radiation is essential to treat GBM, it has led to local recurrence along with therapy-resistant cells in the ionizing radiation (IR) field. Lines of evidence showed cancer stem cells (CSCs) play a vital role in therapy resistance in many cancer types, including GBM. However, the molecular mechanism is poorly understood. Here, we proposed that autophagy could be involved in GSC induction for radioresistance. In a clinical setting, patients who received radiation/chemotherapy had higher LC3II expression and showed poor overall survival compared with those with low LC3 II. In a cell model, U87MG and GBM8401 expressed high level of stemness markers CD133, CD44, Nestin, and autophagy marker P62/LC3II after receiving standard fractionated IR. Furthermore, Wnt/ß-catenin proved to be a potential pathway and related to P62 by using proteasome inhibitor (MG132). Moreover, pharmacological inhibition of autophagy with BAF and CQ inhibit GSC cell growth by impairing autophagy flux as demonstrated by decrease Nestin, CD133, and SOX-2 levels. In conclusion, we demonstrated that fractionated IR could induce GSCs with the stemness phenotype by P62-mediated autophagy through the Wnt/ß-catenin for radioresistance. This study offers a new therapeutic strategy for targeting GBM in the future.

16.
BMC Cancer ; 10: 268, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20529377

RESUMO

BACKGROUND: High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. METHODS: A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, gamma-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. RESULTS: In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, gamma-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both gamma-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of gamma-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). CONCLUSIONS: Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Glioma/metabolismo , Proteínas dos Microtúbulos/metabolismo , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Proteínas dos Microtúbulos/genética , Pessoa de Meia-Idade , Mitose , Estadiamento de Neoplasias , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Cell Biochem ; 339(1-2): 23-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20043192

RESUMO

The specificity and regulation of GSK3beta are thought to involve in the docking interactions at core kinase domain because of the particular amino acid residues. Recent X-ray diffraction studies illuminated the relative binding residues on AxinGID and FRATtide for GSK3beta docking and appeared that GSK3beta Val267Gly (V267G) and Tyr288Phe (Y288F) could distinguish the direct interaction between AxinGID and FRATtide. In order to explore the mode that involved the binding of GSKIP to GSK3beta and compare it with that of AxinGID and FRATtide, we pinpointed the binding sites of GSKIP to GSK3beta through the single-point mutation of four corresponding sites within GSK3beta (residues 260-300) as scaffold-binding region I (designated SBR-I(260-300)). Our data showed that these three binding proteins shared similar binding sites on GSK3beta. We also found that the binding of GSK3beta V267G mutant to GSKIP and AxinGID, but not that of Y288F mutant (effect on FRATtide), was affected. Further, based on the simulation data, the electron-density map of GSKIPtide bore closer similarity to the map AxinGID than to that of FRATtide. Interestingly, many C-terminal helix region point-mutants of GSK3beta L359P, F362A, E366K, and L367P were able to eliminate the binding with FRATtide, but not AxinGID or GSKIP. In addition, CABYR exhibited a unique mode in binding to C-terminal helix region of GSK3beta. Taken together, our data revealed that in addition to the core kinase domain, SBR-I(260-300), another novel C-terminus helix region, designated SBR-II(339-383), also appeared to participate in the recognition and specificity of GSK3beta in binding to other specific proteins.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteína Axina , Western Blotting , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido , beta Catenina/metabolismo
18.
Neurosci Lett ; 737: 135289, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32791096

RESUMO

This study explored the regulatory role of microRNA-1271 (miR-1271) in glioblastoma multiforme (GBM) proliferation and invasion via calcium/calmodulin-dependent protein kinase 2 (CaMKK2). MiR-1271 and CaMKK2 expression were quantified in normal human astrocyte cells, GBM cell lines, and low- and high-grade glioma tissues. MKI67 expression in GBM cells was measured using quantitative real-time polymerase chain reaction. The target relationship between miR-1271 and the CAMKK2 gene was confirmed using the luciferase reporter assay. MTT and Transwell assays were used to analyze the role of miR-1271 and CAMKK2 in cell proliferation and invasion. Finally, CaMKK2 expression and AKT phosphorylation were detected by western blotting. MiR-1271 was significantly downregulated in high-grade glioma tissues and GBM cell lines. Conversely, CAMKK2 mRNA expression was upregulated in high-grade glioma tissues and GBM cell lines. We observed that miR-1271 directly targeted the 3'-untranslated region of CAMKK2, indicating an inverse relationship with miR-1271. Overexpressing miR-1271 inhibited GBM cell proliferation and invasion, whereas inhibiting miR-1271 increased cell proliferation and invasion. Silencing CAMKK2 expression also inhibited GBM cell proliferation and invasion. Furthermore, overexpressing miR-1271 inhibited AKT phosphorylation and MKI67 mRNA expression by targeting CAMKK2. These results indicate that miR-1271 regulates GBM cell proliferation and invasion, and that these effects involve directly targeting the CAMKK2 gene. Therefore, miR-1271 may serve as a new therapeutic target for developing GBM treatments.


Assuntos
Neoplasias Encefálicas/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , MicroRNAs/genética , Invasividade Neoplásica/patologia
19.
Acta Neurochir (Wien) ; 151(9): 1107-11, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19582367

RESUMO

BACKGROUND: The Wnt signaling pathway has been implicated in colon and other cancers. Nevertheless, few or no mutations of CTNNB1 (beta-catenin) have so far been described in brain cancer. We therefore examined the prevalence of constitutive activation of the Wnt signaling pathway in brain cancer specimens as well as cancer cell lines. METHOD: We used polymerase chain reaction PCR and direct sequencing methods to investigate whether mutations in the CTNNB1 phosphorylation sites S33, S37, S41 and T45 were present in 68 brain tumours, including meningioma, astrocytoma, pituitary adenoma, neuroblastoma, metastasis to the brain, and cell lines. FINDINGS: CTNNB1 gene mutations were not found in either the original brain tumour specimens or the cell lines. However, a missense mutation of CTNNB1 was identified at residue 33, TCT (Ser) --> TGT (Cys) in a patient with lung metastasis to brain. In addition, in vitro functional assay showed that the S33C mutant of beta-catenin did affect transcriptional activity in a TCF-4-luciferase reporter construct. CONCLUSIONS: These results indicate that the mutation of exon 3 of the CTNNB1 gene in brain tumours may be a rare event and yet may be required for a small subset of human metastatic brain tumours.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Predisposição Genética para Doença/genética , Mutação/genética , Metástase Neoplásica/genética , beta Catenina/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/secundário , Carcinoma/secundário , Domínio Catalítico/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Éxons/genética , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene , Marcadores Genéticos , Testes Genéticos , Humanos , Neoplasias Pulmonares/patologia , Metástase Neoplásica/fisiopatologia , Fosforilação , Transdução de Sinais/genética , Ativação Transcricional/genética , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA