Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Radiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017676

RESUMO

BACKGROUND: Ventricular volumetry using a short-axis stack of two-dimensional (D) cine balanced steady-state free precession (bSSFP) sequences is crucial in any cardiac magnetic resonance imaging (MRI) examination. This task becomes particularly challenging in children due to multiple breath-holds. OBJECTIVE: To assess the diagnostic performance of accelerated 3-RR cine MRI sequences using deep learning reconstruction compared with standard 2-D cine bSSFP sequences. MATERIAL AND METHODS: Twenty-nine consecutive patients (mean age 11 ± 5, median 12, range 1-17 years) undergoing cardiac MRI were scanned with a conventional segmented 2-D cine and a deep learning accelerated cine (three heartbeats) acquisition on a 1.5-tesla scanner. Short-axis volumetrics were performed (semi-)automatically in both datasets retrospectively by two experienced readers who visually assessed image quality employing a 4-point grading scale. Scan times and image quality were compared using the Wilcoxon rank-sum test. Volumetrics were assessed with linear regression and Bland-Altman analyses, and measurement agreement with intraclass correlation coefficient (ICC). RESULTS: Mean acquisition time was significantly reduced with the 3-RR deep learning cine compared to the standard cine sequence (45.5 ± 13.8 s vs. 218.3 ± 44.8 s; P < 0.001). No significant differences in biventricular volumetrics were found. Left ventricular (LV) mass was increased in the deep learning cine compared with the standard cine sequence (71.4 ± 33.1 g vs. 69.9 ± 32.5 g; P < 0.05). All volumetric measurements had an excellent agreement with ICC > 0.9 except for ejection fraction (EF) (LVEF 0.81, RVEF 0.73). The image quality of deep learning cine images was decreased for end-diastolic and end-systolic contours, papillary muscles, and valve depiction (2.9 ± 0.5 vs. 3.5 ± 0.4; P < 0.05). CONCLUSION: Deep learning cine volumetrics did not differ significantly from standard cine results except for LV mass, which was slightly overestimated with deep learning cine. Deep learning cine sequences result in a significant reduction in scan time with only slightly lower image quality.

2.
Skeletal Radiol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658419

RESUMO

OBJECTIVES: To assess a deep learning-based reconstruction algorithm (DLRecon) in zero echo-time (ZTE) MRI of the shoulder at 1.5 Tesla for improved delineation of osseous findings. METHODS: In this retrospective study, 63 consecutive exams of 52 patients (28 female) undergoing shoulder MRI at 1.5 Tesla in clinical routine were included. Coronal 3D isotropic radial ZTE pulse sequences were acquired in the standard MR shoulder protocol. In addition to standard-of-care (SOC) image reconstruction, the same raw data was reconstructed with a vendor-supplied prototype DLRecon algorithm. Exams were classified into three subgroups: no pathological findings, degenerative changes, and posttraumatic changes, respectively. Two blinded readers performed bone assessment on a 4-point scale (0-poor, 3-perfect) by qualitatively grading image quality features and delineation of osseous pathologies including diagnostic confidence in the respective subgroups. Quantitatively, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of bone were measured. Qualitative variables were compared using the Wilcoxon signed-rank test for ordinal data and the McNemar test for dichotomous variables; quantitative measures were compared with Student's t-testing. RESULTS: DLRecon scored significantly higher than SOC in all visual metrics of image quality (all, p < 0.03), except in the artifact category (p = 0.37). DLRecon also received superior qualitative scores for delineation of osseous pathologies and diagnostic confidence (p ≤ 0.03). Quantitatively, DLRecon achieved superior CNR (95 CI [1.4-3.1]) and SNR (95 CI [15.3-21.5]) of bone than SOC (p < 0.001). CONCLUSION: DLRecon enhanced image quality in ZTE MRI and improved delineation of osseous pathologies, allowing for increased diagnostic confidence in bone assessment.

3.
Eur J Radiol ; 179: 111663, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39142010

RESUMO

PURPOSE: To evaluate the impact of deep learning-based reconstruction (DLRecon) on bone assessment in zero echo-time (ZTE) MRI of the knee at 1.5 Tesla. METHODS: This retrospective study included 48 consecutive exams of 46 patients (23 females) who underwent clinically indicated knee MRI at 1.5 Tesla. Standard imaging protocol comprised a sagittal prescribed, isotropic ZTE sequence. ZTE image reconstruction was performed with a standard-of-care (non-DL) and prototype DLRecon method. Exams were divided into subsets with and without osseous pathology based on the radiology report. Using a 4-point scale, two blinded readers qualitatively graded features of bone depiction including artifacts and conspicuity of pathology including diagnostic certainty in the respective subsets. Quantitatively, one reader measured signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of bone. Comparative analyses were conducted to assess the differences between the reconstruction methods. In addition, interreader agreement was calculated for the qualitative gradings. RESULTS: DLRecon significantly improved gradings for bone depiction relative to non-DL reconstruction (all, p < 0.05), while there was no significant difference with regards to artifacts (both, median score of 0; p = 0.058). In the subset with pathologies, conspicuity of pathology and diagnostic confidence were also scored significantly higher in DLRecon compared to non-DL (median 3 vs 2; p ≤ 0.03). Interreader agreement ranged from moderate to almost-perfect (κ = 0.54-0.88). Quantitatively, DLRecon demonstrated significantly enhanced CNR and SNR of bone compared to non-DL (p < 0.001). CONCLUSION: ZTE MRI with DLRecon improved bone depiction in the knee, compared to non-DL. Additionally, DLRecon increased conspicuity of osseous findings together with diagnostic certainty.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA