Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(8): 5463-5474, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33750111

RESUMO

Decision-makers in developing communities often lack credible data to inform decisions related to water, sanitation, and hygiene. Quantitative microbial risk assessment (QMRA), which quantifies pathogen-related health risks across exposure routes, can be informative; however, the utility of QMRA for decision-making is often undermined by data gaps. This work integrates QMRA, uncertainty and sensitivity analyses, and household surveys in Bwaise, Kampala (Uganda) to characterize the implications of censored data management, identify sources of uncertainty, and incorporate risk perceptions to improve the suitability of QMRA for informal settlements or similar settings. In Bwaise, drinking water, hand rinse, and soil samples were collected from 45 households and supplemented with data from 844 surveys. Quantified pathogen (adenovirus, Campylobacter jejuni, and Shigella spp./EIEC) concentrations were used with QMRA to model infection risks from exposure through drinking water, hand-to-mouth contact, and soil ingestion. Health risks were most sensitive to pathogen data, hand-to-mouth contact frequency, and dose-response models (particularly C. jejuni). When managing censored data, results from upper limits of detection, half of limits of detection, and uniform distributions returned similar results, which deviated from lower limits of detection and maximum likelihood estimation imputation approaches. Finally, risk perceptions (e.g., it is unsafe to drink directly from a water source) were identified to inform risk management.


Assuntos
Saneamento , Microbiologia da Água , Medição de Risco , Uganda , Incerteza
2.
Environ Sci Technol ; 54(15): 9217-9227, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32589417

RESUMO

The sixth Sustainable Development Goal seeks to achieve universal sanitation, but a lack of progress due to inhibiting factors (e.g., limitations in financial resources, sociocultural conditions, household decision-making) demands innovative approaches to meet this ambitious goal. Resource recovery may generate income to offset sanitation costs while also enhancing agriculture through increased access to agricultural nutrients. The objective of this work was to determine if resource recovery sanitation can be a profitable business model in a specific context (Kampala, Uganda) and to explore the potential for this approach to translate to other Sub-Saharan African contexts. A techno-economic analysis was performed to evaluate the financial viability of two nutrient recovery systems and business models in urban communities in Kampala under two financing scenarios: (1) Startup relying on partial sanitation aid, and (2) Self-sustaining without philanthropic financing. Results show profitability can be achieved at a nutrient selling price at or below fertilizer market value in Uganda. Recoverable nutrients from the total population without at least basic sanitation services, in 10 Sub-Saharan African countries, are the same magnitude as nutrients distributed in subsidy programs (30-450% of distributed nutrients), indicating a potential to offset inorganic fertilizer consumption or increase nutrient availability. This research makes a case to support innovative sanitation strategies and the development and financial support of human-derived fertilizer markets in areas with poor fertilizer and sanitation access.


Assuntos
Agricultura , Saneamento , Fertilizantes , Humanos , Nutrientes , Uganda
3.
Environ Sci Technol ; 54(19): 12641-12653, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32822180

RESUMO

Urban growth in low- and middle-income countries has intensified the need to expand sanitation infrastructure, especially in informal settlements. Sanitation approaches for these settings remain understudied, particularly regarding multidimensional social-ecological outcomes. Guided by a conceptual framework (developed in parallel with this study) re-envisioning sanitation as a human-derived resource system, here we characterize existing and alternative sanitation scenarios in an informal settlement in Kampala, Uganda. Combining two core research approaches (household survey analysis, process modeling), we elucidate factors associated with user satisfaction and evaluate each scenario's resource recovery potential, economic implications, and environmental impacts. We find that existing user satisfaction is associated with factors including cleaning frequency, sharing, and type of toilets, and we demonstrate that alternative sanitation systems may offer multidimensional improvements over existing latrines, drying beds, and lagoons. Transitioning to anaerobic treatment could recover energy while reducing overall net costs by 26-65% and greenhouse gas emissions by 38-59%. Alternatively, replacing pit latrines with container-based facilities greatly improves recovery potential in most cases (e.g., a 2- to 4-fold increase for nitrogen) and reduces emissions by 46-79%, although costs increase. Overall, this work illustrates how our conceptual framework can guide empirical research, offering insight into sanitation for informal settlements and more sustainable resource systems.


Assuntos
Aparelho Sanitário , Saneamento , Ecossistema , Humanos , Banheiros , Uganda
4.
Environ Sci Technol ; 54(17): 10446-10459, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32867485

RESUMO

Sanitation remains a global challenge, both in terms of access to toilet facilities and resource intensity (e.g., energy consumption) of waste treatment. Overcoming barriers to universal sanitation coverage and sustainable resource management requires approaches that manage bodily excreta within coupled human and natural systems. In recent years, numerous analytical methods have been developed to understand cross-disciplinary constraints, opportunities, and trade-offs around sanitation and resource recovery. However, without a shared language or conceptual framework, efforts from individual disciplines or geographic contexts may remain isolated, preventing the accumulation of generalized knowledge. Here, we develop a version of the social-ecological systems framework modified for the specific characteristics of bodily excreta. This framework offers a shared vision for sanitation as a human-derived resource system, where people are part of the resource cycle. Through sanitation technologies and management strategies, resources including water, organics, and nutrients accumulate, transform, and impact human experiences and natural environments. Within the framework, we establish a multitiered lexicon of variables, characterized by breadth and depth, to support harmonized understanding and development of models and analytical approaches. This framework's refinement and use will guide interdisciplinary study around sanitation to identify guiding principles for sanitation that advance sustainable development at the nature-society interface.


Assuntos
Saneamento , Banheiros , Conservação dos Recursos Naturais , Humanos , Tecnologia , Recursos Humanos
5.
ACS Environ Au ; 3(3): 179-192, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215438

RESUMO

In resource-limited settings, conventional sanitation systems often fail to meet their goals-with system failures stemming from a mismatch among community needs, constraints, and deployed technologies. Although decision-making tools exist to help assess the appropriateness of conventional sanitation systems in a specific context, there is a lack of a holistic decision-making framework to guide sanitation research, development, and deployment (RD&D) of technologies. In this study, we introduce DMsan-an open-source multi-criteria decision analysis Python package that enables users to transparently compare sanitation and resource recovery alternatives and characterize the opportunity space for early-stage technologies. Informed by the methodological choices frequently used in literature, the core structure of DMsan includes five criteria (technical, resource recovery, economic, environmental, and social), 28 indicators, criteria weight scenarios, and indicator weight scenarios tailored to 250 countries/territories, all of which can be adapted by end-users. DMsan integrates with the open-source Python package QSDsan (quantitative sustainable design for sanitation and resource recovery systems) for system design and simulation to calculate quantitative economic (via techno-economic analysis), environmental (via life cycle assessment), and resource recovery indicators under uncertainty. Here, we illustrate the core capabilities of DMsan using an existing, conventional sanitation system and two proposed alternative systems for Bwaise, an informal settlement in Kampala, Uganda. The two example use cases are (i) use by implementation decision makers to enhance decision-making transparency and understand the robustness of sanitation choices given uncertain and/or varying stakeholder input and technology ability and (ii) use by technology developers seeking to identify and expand the opportunity space for their technologies. Through these examples, we demonstrate the utility of DMsan to evaluate sanitation and resource recovery systems tailored to individual contexts and increase transparency in technology evaluations, RD&D prioritization, and context-specific decision making.

6.
ACS Environ Au ; 3(4): 209-222, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37483306

RESUMO

Achieving safely managed sanitation and resource recovery in areas that are rural, geographically challenged, or experiencing rapidly increasing population density may not be feasible with centralized facilities due to space requirements, site-specific concerns, and high costs of sewer installation. Nonsewered sanitation (NSS) systems have the potential to provide safely managed sanitation and achieve strict wastewater treatment standards. One such NSS treatment technology is the NEWgenerator, which includes an anaerobic membrane bioreactor (AnMBR), nutrient recovery via ion exchange, and electrochlorination. The system has been shown to achieve robust treatment of real waste for over 100 users, but the technology's relative life cycle sustainability remains unclear. This study characterizes the financial viability and life cycle environmental impacts of the NEWgenerator and prioritizes opportunities to advance system sustainability through targeted improvements and deployment. The costs and greenhouse gas (GHG) emissions of the NEWgenerator (general case) leveraging grid electricity were 0.139 [0.113-0.168] USD cap-1 day-1 and 79.7 [55.0-112.3] kg CO2-equiv cap-1 year-1, respectively. A transition to photovoltaic-generated electricity would increase costs to 0.145 [0.118-0.181] USD cap-1 day-1 but decrease GHG emissions to 56.1 [33.8-86.2] kg CO2-equiv cap-1 year-1. The deployment location analysis demonstrated reduced median costs for deployment in China (-38%), India (-53%), Senegal (-31%), South Africa (-31%), and Uganda (-35%), but at comparable or increased GHG emissions (-2 to +16%). Targeted improvements revealed the relative change in median cost and GHG emissions to be -21 and -3% if loading is doubled (i.e., doubled users per unit), -30 and -12% with additional sludge drying, and +9 and -25% with the addition of a membrane contactor, respectively, with limited benefits (0-5% reductions) from an alternative photovoltaic battery, low-cost housing, or improved frontend operation. This research demonstrates that the NEWgenerator is a low-cost, low-emission NSS treatment technology with the potential for resource recovery to increase access to safe sanitation.

7.
ACS Environ Au ; 2(5): 455-466, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36164351

RESUMO

Omni Processors (OPs) are community-scale systems for non-sewered fecal sludge treatment. These systems have demonstrated their capacity to treat excreta from tens of thousands of people using thermal treatment processes (e.g., pyrolysis), but their relative sustainability is unclear. In this study, QSDsan (an open-source Python package) was used to characterize the financial viability and environmental implications of fecal sludge treatment via pyrolysis-based OP technology treating mixed and source-separated human excreta and to elucidate the key drivers of system sustainability. Overall, the daily per capita cost for the treatment of mixed excreta (pit latrines) via the OP was estimated to be 0.05 [0.03-0.08] USD·cap-1·d-1, while the treatment of source-separated excreta (from urine-diverting dry toilets) was estimated to have a per capita cost of 0.09 [0.08-0.14] USD·cap-1·d-1. Operation and maintenance of the OP is a critical driver of total per capita cost, whereas the contribution from capital cost of the OP is much lower because it is distributed over a relatively large number of users (i.e., 12,000 people) for the system lifetime (i.e., 20 yr). The total emissions from the source-separated scenario were estimated to be 11 [8.3-23] kg CO2 eq·cap-1·yr-1, compared to 49 [28-77] kg CO2 eq·cap-1·yr-1 for mixed excreta. Both scenarios fall below the estimates of greenhouse gas (GHG) emissions for anaerobic treatment of fecal sludge collected from pit latrines. Source-separation also creates opportunities for resource recovery to offset costs through nutrient recovery and carbon sequestration with biochar production. For example, when carbon is valued at 150 USD·Mg-1 of CO2, the per capita cost of sanitation can be further reduced by 44 and 40% for the source-separated and mixed excreta scenarios, respectively. Overall, our results demonstrate that pyrolysis-based OP technology can provide low-cost, low-GHG fecal sludge treatment while reducing global sanitation gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA