Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Virol ; 97(8): e0078123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37565748

RESUMO

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Herpesvirus Humano 1 , Ribonucleotídeo Redutases , Humanos , Recém-Nascido , Citidina Desaminase/metabolismo , Citomegalovirus/genética , Replicação do DNA , DNA Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Imediatamente Precoces/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
2.
Glia ; 69(4): 858-871, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128485

RESUMO

Microglial cells are the main reservoir for HIV-1 within the brain and potential exists for negative immune checkpoint blockade therapies to purge this viral reservoir. Here, we investigated cytolytic responses of CD8+ T lymphocytes against microglia loaded with peptide epitopes. Initially, flow cytometric analysis demonstrated efficient killing of HIV-1 p24 AI9 or YI9 peptide-loaded splenocytes in MHC-matched recipients. Cytolytic killing of microglia was first demonstrated using ovalbumin (OVA) as a model antigen for in vitro cytotoxic T lymphocyte (CTL) assays. Peptide-loaded primary microglia obtained from programmed death ligand (PD-L) 1 knockout (KO) animals showed significantly more killing than cells from wild-type (WT) animals when co-cultured with activated CD8+ T-cells isolated from rAd5-OVA primed animals. Moreover, when peptide loaded-microglial cells from WT animals were treated with neutralizing α-PD-L1 Ab, significantly more killing was observed compared to either untreated or IgG isotype-treated cells. Most importantly, significantly increased in vivo killing of HIV-1 p24 YI9 peptide-loaded microglia from PD-L1 KO animals, as well as AI9 peptide-loaded BALB/c microglial cells treated with α-PD-L1, was observed within brains of rAd5-p24 primed-CNS boosted C57BL/6 or BALB/c mice, respectively. Finally, ex vivo responses of brain CD8+ T-cells in response to AI9 stimulation showed significantly increased IFN-γ and IL-2 production when treated with α-PD-1 Abs. Greater proliferation of CD8+ T-cells from the brain was also observed following blockade. Taken together, these studies demonstrate that PD-L1 induction on microglia restrains CTL responses and indicate that immune checkpoint blockade targeting this pathway may be beneficial in clearing viral brain reservoirs.


Assuntos
Antígeno B7-H1 , Linfócitos T Citotóxicos , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1
3.
Pediatr Res ; 89(4): 838-845, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32555536

RESUMO

BACKGROUND: Cytomegalovirus (CMV) is a leading infectious cause of neurologic deficits, both in the settings of congenital and perinatal infection, but few animal models exist to study neurodevelopmental outcomes. This study examined the impact of neonatal guinea pig CMV (GPCMV) infection on spatial learning and memory in a Morris water maze (MWM) model. METHODS: Newborn pups were challenged intraperitoneally (i.p.) with a pathogenic red fluorescent protein-tagged GPCMV, or sham inoculated. On days 15-19 post infection (p.i.), pups were tested in the MWM. Viral loads were measured in blood and tissue by quantitative PCR (qPCR), and brain samples collected at necropsy were examined by histology and immunohistochemistry. RESULTS: Viremia (DNAemia) was detected at day 3 p.i. in 7/8 challenged animals. End-organ dissemination was observed, by qPCR, in the lung, liver, and spleen. CD4-positive (CD4+) and CD8-positive (CD8+) T cell infiltrates were present in brains of challenged animals, particularly in periventricular and hippocampal regions. Reactive gliosis and microglial nodules were observed. Statistically significant spatial learning and memory deficits were observed by MWM, particularly for total maze distance traveled (p < 0.0001). CONCLUSION: Neonatal GPCMV infection in guinea pigs results in cognitive defects demonstrable by the MWM. This neonatal guinea pig challenge model can be exploited for studying antiviral interventions. IMPACT: CMV impairs neonatal neurocognition and memory in the setting of postnatal infection. The MWM can be used to examine memory and learning in a guinea pig model of neonatal CMV infection. CD4+ and CD8+ T cells infiltrate the brain following neonatal CMV challenge. This article demonstrates that the MWM can be used to evaluate memory and learning after neonatal GPCMV challenge. The guinea pig can be used to examine central nervous system pathology caused by neonatal CMV infection and this attribute may facilitate the study of vaccines and antivirals.


Assuntos
Citomegalovirus/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Fibroblastos/metabolismo , Cobaias , Proteínas Luminescentes/metabolismo , Aprendizagem em Labirinto , Neurologia/métodos , Carga Viral , Proteína Vermelha Fluorescente
4.
Int J Mol Sci ; 20(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987269

RESUMO

The programmed death (PD)-1/PD-L1 pathway is a well-recognized negative immune checkpoint that results in functional inhibition of T-cells. Microglia, the brain-resident immune cells are vital for pathogen detection and initiation of neuroimmune responses. Moreover, microglial cells and astrocytes govern the activity of brain-infiltrating antiviral T-cells through upregulation of PD-L1 expression. While T-cell suppressive responses within brain are undoubtedly beneficial to the host, preventing cytotoxic damage to this vital organ, establishment of a prolonged anti-inflammatory milieu may simultaneously lead to deficiencies in viral clearance. An immune checkpoint blockade targeting the PD-1: PD-L1 (B7-H1; CD274) axis has revolutionized contemporary treatment for a variety of cancers. However, the therapeutic potential of PD1: PD-L1 blockade therapies targeting viral brain reservoirs remains to be determined. For these reasons, it is key to understand both the detrimental and protective functions of this signaling pathway within the brain. This review highlights how glial cells use PD-L1 expression to modulate T-cell effector function and limit detrimental bystander damage, while still retaining an effective defense of the brain.


Assuntos
Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Animais , Sistema Nervoso Central/citologia , Humanos , Linfócitos T/citologia , Linfócitos T/metabolismo
5.
J Neuroinflammation ; 15(1): 66, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506535

RESUMO

BACKGROUND: Peripheral neuropathy is currently the most common neurological complication in HIV-infected individuals, occurring in 35-50% of patients undergoing combination anti-retroviral therapy. Data have shown that distal symmetric polyneuropathy develops in mice by 6 weeks following infection with the LP-BM5 retrovirus mixture. Previous work from our laboratory has demonstrated that glial cells modulate antiviral T-cell effector responses through the programmed death (PD)-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. METHODS: Using the MouseMet electronic von Frey system, we assessed hind-paw mechanical hypersensitivity in LP-BM5-infected wild-type (WT) and PD-1 KO animals. Using multi-color flow cytometry, we quantitatively assessed cellular infiltration and microglial activation. Using real-time RT-PCR, we assessed viral load, expression of IFN-γ, iNOS, and MHC class II. Using western blotting, we measured protein nitrosylation within the lumbar spinal cord (LSC) and dorsal root ganglion (DRG). Histochemical staining was performed to analyze the presence of CD3, ionized calcium binding adaptor molecule (Iba)-1, MHCII, nitrotyrosine, isolectin B4 (IB4) binding, and neurofilament 200 (NF200). Statistical analyses were carried out using graphpad prism. RESULTS: Hind-paw mechanical hypersensitivity observed in LP-BM5-infected animals was associated with significantly increased lymphocyte infiltration into the spinal cord and DRG. We also observed elevated expression of IFN-γ (in LSC and DRG) and MHC II (on resident microglia in LSC). We detected elevated levels of 3-nitrotyrosine within the LSC and DRG of LP-BM5-infected animals, an indicator of nitric oxide (NO)-induced protein damage. Moreover, we observed 3-nitrotyrosine in both small (IB4+) and large (NF200+) DRG sensory neurons. Additionally, infected PD-1 KO animals displayed significantly greater mechanical hypersensitivity than WT or uninfected mice at 4 weeks post-infection (p.i.). Accelerated onset of hind-paw hypersensitivity in PD-1 KO animals was associated with significantly increased infiltration of CD4+ and CD8+ T lymphocytes, macrophages, and microglial activation at early time points. Importantly, we also observed elevated levels of 3-nitrotyrosine and iNOS in infected PD-1 KO animals when compared with WT animals. CONCLUSIONS: Results reported here connect peripheral immune cell infiltration and reactive gliosis with nitrosative damage. These data may help elucidate how retroviral infection-induced neuroinflammatory networks contribute to nerve damage and neuropathic pain.


Assuntos
Neuralgia/etiologia , Infecções por Retroviridae/complicações , Animais , Antígenos CD/metabolismo , Modelos Animais de Doenças , Gânglios Espinais , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Interferon gama/metabolismo , Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/patologia , Neuralgia/virologia , Óxido Nítrico Sintase Tipo II , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/genética , RNA Mensageiro , Retroviridae/patogenicidade , Medula Espinal/patologia
6.
J Neuroinflammation ; 14(1): 82, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407741

RESUMO

BACKGROUND: Previous work from our laboratory has demonstrated that during acute viral brain infection, glial cells modulate antiviral T cell effector responses through the PD-1: PD-L1 pathway, thereby limiting the deleterious consequences of unrestrained neuroinflammation. Here, we evaluated the PD-1: PD-L1 pathway in development of brain-resident memory T cells (bTRM) following murine cytomegalovirus (MCMV) infection. METHODS: Flow cytometric analysis of immune cells was performed at 7, 14, and 30 days post-infection (dpi) to assess the shift of brain-infiltrating CD8+ T cell populations from short-lived effector cells (SLEC) to memory precursor effector cells (MPEC), as well as generation of bTRMs. RESULTS: In wild-type (WT) animals, we observed a switch in the phenotype of brain-infiltrating CD8+ T cell populations from KLRG1+ CD127- (SLEC) to KLRG1- CD127+ (MPEC) during transition from acute through chronic phases of infection. At 14 and 30 dpi, the majority of CD8+ T cells expressed CD127, a marker of memory cells. In contrast, fewer CD8+ T cells expressed CD127 within brains of infected, PD-L1 knockout (KO) animals. Notably, in WT mice, a large population of CD8+ T cells was phenotyped as CD103+ CD69+, markers of bTRM, and differences were observed in the numbers of these cells when compared to PD-L1 KOs. Immunohistochemical studies revealed that brain-resident CD103+ bTRM cells were localized to the parenchyma. Higher frequencies of CXCR3 were also observed among WT animals in contrast to PD-L1 KOs. CONCLUSIONS: Taken together, our results indicate that bTRMs are present within the CNS following viral infection and the PD-1: PD-L1 pathway plays a role in the generation of this brain-resident population.


Assuntos
Antígeno B7-H1/deficiência , Encéfalo/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Encefalite Viral/metabolismo , Receptor de Morte Celular Programada 1/deficiência , Animais , Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Encefalite Viral/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células NIH 3T3 , Transdução de Sinais/fisiologia
7.
J Neuroinflammation ; 13(1): 114, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27207308

RESUMO

BACKGROUND: Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. METHODS: Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. RESULTS: The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. CONCLUSIONS: CXCR3 is the primary chemokine receptor on CD19(+) B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.


Assuntos
Linfócitos B/patologia , Encéfalo/patologia , Infecções por Herpesviridae/patologia , Muromegalovirus/patogenicidade , Neuroglia/patologia , Análise de Variância , Animais , Animais Recém-Nascidos , Linfócitos B/virologia , Encéfalo/virologia , Sobrevivência Celular , Células Cultivadas , Quimiotaxia/fisiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Infecções por Herpesviridae/virologia , Leucócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/virologia , RNA Mensageiro/metabolismo
8.
J Immunol ; 193(12): 6070-80, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25385825

RESUMO

Previous studies have demonstrated the existence of a subset of B lymphocytes, regulatory B cells (Bregs), which modulate immune function. In this study, in vivo and in vitro experiments were undertaken to elucidate the role of these Bregs in controlling neuroinflammation following viral brain infection. We used multicolor flow cytometry to phenotype lymphocyte subpopulations infiltrating the brain, along with in vitro cocultures to assess their anti-inflammatory and immunoregulatory roles. This distinctive subset of CD19(+)CD1d(hi)CD5(+) B cells was found to infiltrate the brains of chronically infected animals, reaching highest levels at the latest time point tested (30 d postinfection). B cell-deficient Jh(-/-) mice were found to develop exacerbated neuroimmune responses as measured by enhanced accumulation and/or retention of CD8(+) T cells within the brain, as well as increased levels of microglial activation (MHC class II). Conversely, levels of Foxp3(+) regulatory T cells were found to be significantly lower in Jh(-/-) mice when compared with wild-type (Wt) animals. Further experiments showed that in vitro-generated IL-10-secreting Bregs (B10) were able to inhibit cytokine responses from microglia following stimulation with viral Ags. These in vitro-generated B10 cells were also found to promote proliferation of regulatory T cells in coculture studies. Finally, gain-of-function experiments demonstrated that reconstitution of Wt B cells into Jh(-/-) mice restored neuroimmune responses to levels exhibited by infected Wt mice. Taken together, these results demonstrate that Bregs modulate T lymphocyte as well as microglial cell responses within the infected brain and promote CD4(+)Foxp3(+) T cell proliferation in vitro.


Assuntos
Linfócitos B Reguladores/imunologia , Encefalite/imunologia , Encefalite/virologia , Transferência Adotiva , Animais , Linfócitos B Reguladores/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Encefalite/genética , Encefalite/metabolismo , Feminino , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Imunofenotipagem , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Microglia/imunologia , Muromegalovirus/genética , Muromegalovirus/imunologia , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Glia ; 63(11): 1982-1996, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26041050

RESUMO

Long-term, persistent central nervous system inflammation is commonly seen following brain infection. Using a murine model of viral encephalitis (murine cytomegalovirus, MCMV) we have previously shown that post-encephalitic brains are maintained in an inflammatory state consisting of glial cell reactivity, retention of brain-infiltrating tissue-resident memory CD8+ T-cells, and long-term persistence of antibody-producing cells of the B-lineage. Here, we report that this neuroinflammation occurs concomitantly with accumulation and retention of immunosuppressive regulatory T-cells (Tregs), and is exacerbated following their ablation. However, the extent to which these Tregs function to control neuroimmune activation following MCMV encephalitis is unknown. In this study, we used Foxp3-diphtheria toxin receptor-GFP (Foxp3-DTR-GFP) transgenic mice, which upon administration of low-dose diphtheria toxin (DTx) results in the specific depletion of Tregs, to investigate their function. We found treatment with DTx during the acute phase of viral brain infection (0-4 dpi) resulted in depletion of Tregs from the brain, exacerbation of encephalitis (i.e., increased presence of CD4+ and CD8+ T-cells), and chronic reactive phenotypes of resident glial cells (i.e., elevated MHC Class II as well as PD-L1 levels, sustained microgliosis, and increased glial fibrillary acidic protein (GFAP) expression on astrocytes) versus untreated, infected animals. This chronic proinflammatory environment was associated with reduced cognitive performance in spatial learning and memory tasks (Barnes Maze) by convalescent animals. These data demonstrate that chronic glial cell activation, unremitting post-encephalitic neuroinflammation, and its associated long-term neurological sequelae in response to viral brain infection are modulated by the immunoregulatory properties of Tregs. GLIA 2015;63:1982-1996.

10.
Glia ; 62(10): 1582-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24890099

RESUMO

Engagement of the programmed death (PD)-1 receptor on activated cells by its ligand (PD-L1) is a mechanism for suppression of activated T-lymphocytes. Microglia, the resident inflammatory cells of the brain, are important for pathogen detection and initiation of innate immunity, however, a novel role for these cells as immune regulators has also emerged. PD-L1 on microglia has been shown to negatively regulate T-cell activation in models of multiple sclerosis and acute viral encephalitis. In this study, we investigated the role of glial cell PD-L1 in controlling encephalitogenic CD8(+) T-lymphocytes, which infiltrate the brain to manage viral infection, but remain to produce chronic neuroinflammation. Using a model of chronic neuroinflammation following murine cytomegalovirus (MCMV)-induced encephalitis, we found that CD8(+) T-cells persisting within the brain expressed PD-1. Conversely, activated microglia expressed PD-L1. In vitro, primary murine microglia, which express low basal levels of PD-L1, upregulated the co-inhibitory ligand on IFN-γ-treatment. Blockade of the PD-1: PD-L1 pathway in microglial: CD8(+) T-cell co-cultures increased T-cell IFN-γ and interleukin (IL)-2 production. We observed a similar phenomenon following blockade of this co-inhibitory pathway in astrocyte: CD8(+) T-cell co-cultures. Using ex vivo cultures of brain leukocytes, including microglia and CD8(+) T-cells, obtained from mice with MCMV-induced chronic neuroinflammation, we found that neutralization of either PD-1 or PD-L1 increased IFN-γ production from virus-specific CD8(+) T-cells stimulated with MCMV IE1168-176 peptide. These data demonstrate that microglia and astrocytes control antiviral T-cell responses and suggest a therapeutic potential of PD1: PD-L1 modulation to manage the deleterious consequences of uncontrolled neuroinflammation.


Assuntos
Astrócitos/fisiologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Encefalite/fisiopatologia , Microglia/fisiologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Encéfalo/fisiopatologia , Doença Crônica , Técnicas de Cocultura , Citomegalovirus , Infecções por Citomegalovirus , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Interleucina-2/metabolismo , Leucócitos/fisiologia , Camundongos Endogâmicos BALB C , Neuroimunomodulação/fisiologia , Transdução de Sinais
11.
J Neuroinflammation ; 10: 98, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23902750

RESUMO

BACKGROUND: Highly active antiretroviral therapy (HAART) restores inflammatory immune responses in AIDS patients which may unmask previous subclinical infections or paradoxically exacerbate symptoms of opportunistic infections. In resource-poor settings, 25% of patients receiving HAART may develop CNS-related immune reconstitution inflammatory syndrome (IRIS). Here we describe a reliable mouse model to study underlying immunopathological mechanisms of CNS-IRIS. METHODS: Utilizing our HSV brain infection model and mice with MAIDS, we investigated the effect of immune reconstitution on MAIDS mice harboring opportunistic viral brain infection. Using multi-color flow cytometry, we quantitatively measured the cellular infiltrate and microglial activation. RESULTS: Infection with the LP-BM5 retroviral mixture was found to confer susceptibility to herpes simplex virus (HSV)-1 brain infection to normally-resistant C57BL/6 mice. Increased susceptibility to brain infection was due to severe immunodeficiency at 8 wks p.i. and a marked increase in programmed death-1 (PD-1) expression on CD4+ and CD8+ T-cells. Both T-cell loss and opportunistic brain infection were associated with high level PD-1 expression because PD-1-knockout mice infected with LP-BM5 did not exhibit lymphopenia and retained resistance to HSV-1. In addition, HSV-infection of MAIDS mice stimulated peripheral immune cell infiltration into the brain and its ensuing microglial activation. Interestingly, while opportunistic herpes virus brain infection of C57BL/6 MAIDS mice was not itself lethal, when T-cell immunity was reconstituted through adoptive transfer of virus-specific CD3+ T-cells, it resulted in significant mortality among recipients. This immune reconstitution-induced mortality was associated with exacerbated neuroinflammation, as determined by MHC class II expression on resident microglia and elevated levels of Th1 cytokines in the brain. CONCLUSIONS: Taken together, these results indicate development of an immune reconstitution disease within the central nervous system (CNS-IRD). Experimental immune reconstitution disease of the CNS using T-cell repopulation of lymphopenic murine hosts harboring opportunistic brain infections may help elucidate neuroimmunoregulatory networks that produce CNS-IRIS in patients initiating HAART.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Viroses do Sistema Nervoso Central/imunologia , Herpes Simples/imunologia , Síndrome de Imunodeficiência Adquirida Murina/imunologia , Infecções Oportunistas Relacionadas com a AIDS/mortalidade , Infecções Oportunistas Relacionadas com a AIDS/patologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Viroses do Sistema Nervoso Central/mortalidade , Viroses do Sistema Nervoso Central/patologia , Herpes Simples/mortalidade , Herpes Simples/patologia , Inflamação/imunologia , Inflamação/mortalidade , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Imunodeficiência Adquirida Murina/mortalidade , Síndrome de Imunodeficiência Adquirida Murina/patologia
12.
iScience ; 26(5): 106628, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192971

RESUMO

This study was undertaken to investigate the role of CD4+FoxP3+ regulatory T cells (Tregs) in regulating neuroinflammation during viral Ag-challenge and re-challenge. CD8+ lymphocytes persisting within tissues are designated tissue-resident memory T cells (TRM), within brain: bTRM. Reactivation of bTRM with T cell epitope peptides generates rapid antiviral recall, but repeated stimulation leads to cumulative dysregulation of microglial activation, proliferation, and prolonged neurotoxic mediator production. Here, we show Tregs were recruited into murine brains following prime-CNS boost, but displayed altered phenotypes following repeated Ag-challenge. In response to repeated Ag, brain Tregs (bTregs) displayed inefficient immunosuppressive capacity, along with reduced expression of suppression of tumorigenicity 2 (ST2) and amphiregulin (Areg). Ex vivo Areg treatment revealed reduced production of neurotoxic mediators such as iNOS, IL-6, and IL-1ß, and decreased microglial activation and proliferation. Taken together, these data indicate bTregs display an unstable phenotype and fail to control reactive gliosis in response to repeated Ag-challenge.

13.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778493

RESUMO

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting involvement of an immediate early or early (IE-E) viral protein. In support of this mechanism, cycloheximide treatment of HCMV-infected cells prevents the expression of viral proteins and simultaneously blocks APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which is a viral DNA synthesis inhibitor affecting late protein expression, still permits A3B relocalization. These results combine to show that the beta-herpesvirus HCMV uses a fundamentally different, RNR-independent molecular mechanism to antagonize APOBEC3B. Importance: Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses in order to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.

14.
Cells ; 11(18)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139401

RESUMO

Regulatory T-cells (Tregs) play pivotal roles during infection, cancer, and autoimmunity. In our previous study, we demonstrated a role for the PD-1:PD-L1 pathway in controlling cytolytic responses of CD8+ T lymphocytes against microglial cells presenting viral peptides. In this study, we investigated the role of Tregs in suppressing CD8+ T-cell-mediated cytotoxicity against primary microglial cells. Using in vitro cytotoxicity assays and flow cytometry, we demonstrated a role for Tregs in suppressing antigen-specific cytotoxic T-lymphocyte (CTL) responses against microglia loaded with a model peptide (SIINFEKL). We went on to show a significant decrease in the frequency of IFN-γ- and TNF-producing CD8+ T-cells when cultured with Tregs. Interestingly, a significant increase in the frequency of granzyme B- and Ki67-producing CTLs was observed. We also observed a significant decrease in the production of interleukin (IL)-6 by microglia. On further investigation, we found that Tregs significantly reduced MHC class 1 (MHC-1) expression on IFN-γ-treated microglial cells. Taken together, these studies demonstrate an immunosuppressive role for Tregs on CTL responses generated against primary microglia. Hence, modulation of Treg cell activity in combination with negative immune checkpoint blockade may stimulate anti-viral T-cell responses to more efficiently clear viral infection from microglial cell reservoirs.


Assuntos
Linfócitos T Citotóxicos , Linfócitos T Reguladores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Granzimas/metabolismo , Inibidores de Checkpoint Imunológico , Interferon gama/metabolismo , Interleucinas/metabolismo , Antígeno Ki-67/metabolismo , Microglia/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
15.
J Neuroinflammation ; 8: 123, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21943001

RESUMO

BACKGROUND: Production of reactive oxygen species (ROS) and proinflammatory cytokines by microglial cells in response to viral brain infection contributes to both pathogen clearance and neuronal damage. In the present study, we examined the effect of herpes simplex virus (HSV)-1-induced, NADPH oxidase-derived ROS in activating mitogen-activated protein kinases (MAPKs) as well as driving cytokine and chemokine expression in primary murine microglia. METHODS: Oxidation of 2', 7'-dichlorodihydrofluorescin diacetate (H2DCFDA) was used to measure production of intracellular ROS in microglial cell cultures following viral infection. Virus-induced cytokine and chemokine mRNA and protein levels were assessed using real-time RT-PCR and ELISA, respectively. Virus-induced phosphorylation of microglial p38 and p44/42 (ERK1/2) MAPKs was visualized using Western Blot, and levels of phospho-p38 were quantified using Fast Activated Cell-based ELISA (FACE assay). Diphenyleneiodonium (DPI) and apocynin (APO), inhibitors of NADPH oxidases, were used to investigate the role of virus-induced ROS in MAPK activation and cytokine, as well as chemokine, production. RESULTS: Levels of intracellular ROS were found to be highly elevated in primary murine microglial cells following infection with HSV and the majority of this virus-induced ROS was blocked following DPI and APO treatment. Correspondingly, inhibition of NADPH oxidase also decreased virus-induced proinflammatory cytokine and chemokine production. In addition, microglial p38 and p44/42 MAPKs were found to be phosphorylated in response to viral infection and this activation was also blocked by inhibitors of NADPH oxidase. Finally, inhibition of either of these ROS-induced signaling pathways suppressed cytokine (TNF-α and IL-1ß) production, while chemokine (CCL2 and CXCL10) induction pathways were sensitive to inhibition of p38, but not ERK1/2 MAPK. CONCLUSIONS: Data presented herein demonstrate that HSV infection induces proinflammatory responses in microglia through NADPH oxidase-dependent ROS and the activation of MAPKs.


Assuntos
Citocinas/imunologia , Herpesvirus Humano 1/imunologia , Microglia/imunologia , Microglia/virologia , NADPH Oxidases/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Ativação Enzimática , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/citologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/imunologia , NADPH Oxidases/antagonistas & inibidores , Oxirredução , Transdução de Sinais/imunologia
16.
J Neurovirol ; 17(5): 424-37, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21800103

RESUMO

Murine cytomegalovirus (MCMV) brain infection stimulates microglial cell-driven proinflammatory chemokine production which precedes the presence of brain-infiltrating systemic immune cells. Here, we show that in response to MCMV brain infection, antigen-specific CD8(+) T cells migrated into the brain and persisted as long-lived memory cells. The role of these persistent T cells in the brain is unclear because most of our understanding of antimicrobial T cell responses comes from analyses of lymphoid tissue. Strikingly, memory T cells isolated from the brain exhibited an effector phenotype and produced IFN-γ upon restimulation with viral peptide. Furthermore, we observed time-dependent and long-term activation of resident microglia, indicated by chronic MHC class II up-regulation and TNF-α production. The immune response in this immunologically restricted site persisted in the absence of active viral replication. Lymphocyte infiltrates were detected until 30 days post-infection (p.i.), with CD8(+) and CD4(+) T cells present at a 3:1 ratio, respectively. We then investigated the role of IFN-γ in chronic microglial activation by using IFN-γ-knockout (GKO) mice. At 30 days p.i., GKO mice demonstrated a similar phenotypic brain infiltrate when compared to wild-type mice (Wt), however, MHC class II expression on microglia isolated from these GKO mice was significantly lower compared to Wt animals. When IFN-γ producing CD8(+) T cells were reconstituted in GKO mice, MHC class II up-regulation on microglial cells was restored. Taken together, these results suggest that MCMV brain infection results in long-term persistence of antigen-specific CD8(+) T cells which produce IFN-γ and drive chronic microglial cell activation. This response was found to be dependent on IFN-γ production by viral Ag-specific T cells during the chronic phase of disease.


Assuntos
Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/patologia , Memória Imunológica , Interferon gama/biossíntese , Microglia/patologia , Animais , Encéfalo/citologia , Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Genes MHC da Classe II , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microglia/imunologia , Muromegalovirus/imunologia , Muromegalovirus/patogenicidade , Muromegalovirus/fisiologia , Neutrófilos/imunologia , Fenótipo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Replicação Viral
17.
J Neurovirol ; 17(3): 201-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21416394

RESUMO

Congenital cytomegalovirus (CMV) infection is the leading cause of sensorineural hearing loss (SNHL) in children. During murine (M)CMV-induced encephalitis, the immune response is important for both the control of viral dissemination and the clearance of virus from the brain. While the importance of CMV-induced SNHL has been described, the mechanisms surrounding its pathogenesis and the role of inflammatory responses remain unclear. This study presents a neonatal mouse model of profound SNHL in which MCMV preferentially infected both cochlear perilymphatic epithelial cells and spiral ganglion neurons. Interestingly, MCMV infection induced cochlear hair cell death by 21 days post-infection, despite a clear lack of direct infection of hair cells and the complete clearance of the virus from the cochlea by 14 dpi. Flow cytometric, immunohistochemical, and quantitative PCR analysis of MCMV-infected cochlea revealed a robust and chronic inflammatory response, including a prolonged increase in reactive oxygen species production by infiltrating macrophages. These data support a pivotal role for inflammation during MCMV-induced SNHL.


Assuntos
Cóclea/patologia , Cóclea/virologia , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/patologia , Células Epiteliais/patologia , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/patologia , Neurônios/patologia , Animais , Animais Recém-Nascidos , Antígenos CD/análise , Criança , Clonagem Molecular , Cóclea/imunologia , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Escherichia coli , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Citometria de Fluxo , Perda Auditiva Neurossensorial/imunologia , Perda Auditiva Neurossensorial/virologia , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Linfócitos/imunologia , Linfócitos/virologia , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Muromegalovirus/genética , Muromegalovirus/crescimento & desenvolvimento , Muromegalovirus/imunologia , Neurônios/virologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
18.
Clin Microbiol Rev ; 22(1): 99-126, Table of Contents, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19136436

RESUMO

Congenital cytomegalovirus (CMV) infection is the leading infectious cause of mental retardation and hearing loss in the developed world. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and long-term disabilities associated with CMV infection. In this review, current concepts regarding the pathogenesis of neurological injury caused by CMV infections acquired by the developing fetus are summarized. The pathogenesis of CMV-induced disabilities is considered in the context of the epidemiology of CMV infection in pregnant women and newborn infants, and the clinical manifestations of brain injury are reviewed. The prospects for intervention, including antiviral therapies and vaccines, are summarized. Priorities for future research are suggested to improve the understanding of this common and disabling illness of infancy.


Assuntos
Doenças do Sistema Nervoso Central/congênito , Doenças do Sistema Nervoso Central/virologia , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/patologia , Antivirais/uso terapêutico , Doenças do Sistema Nervoso Central/epidemiologia , Doenças do Sistema Nervoso Central/patologia , Infecções por Citomegalovirus/epidemiologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/imunologia , Feminino , Humanos , Recém-Nascido , Gravidez
19.
Front Cell Neurosci ; 15: 686340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447297

RESUMO

Upon reactivation of quiescent neurotropic viruses antigen (Ag)-specific brain resident-memory CD8+ T-cells (bTRM) may respond to de novo-produced viral Ag through the rapid release of IFN-γ, which drives subsequent interferon-stimulated gene expression in surrounding microglia. Through this mechanism, a small number of adaptive bTRM may amplify responses to viral reactivation leading to an organ-wide innate protective state. Over time, this brain-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences. We have previously shown that HIV-1 p24 Ag-specific bTRM persist within the murine brain using a heterologous prime-CNS boost strategy. In response to Ag restimulation, these bTRM display rapid and robust recall responses, which subsequently activate glial cells. In this study, we hypothesized that repeated challenges to viral antigen (Ag) (modeling repeated episodes of viral reactivation) culminate in prolonged reactive gliosis and exacerbated neurotoxicity. To address this question, mice were first immunized with adenovirus vectors expressing the HIV p24 capsid protein, followed by a CNS-boost using Pr55Gag/Env virus-like particles (HIV-VLPs). Following the establishment of the bTRM population [>30 days (d)], prime-CNS boost animals were then subjected to in vivo challenge, as well as re-challenge (at 14 d post-challenge), using the immunodominant HIV-1 AI9 CD8+ T-cell epitope peptide. In these studies, Ag re-challenge resulted in prolonged expression of microglial activation markers and an increased proliferative response, longer than the challenge group. This continued expression of MHCII and PD-L1 (activation markers), as well as Ki67 (proliferative marker), was observed at 7, 14, and 30 days post-AI9 re-challenge. Additionally, in vivo re-challenge resulted in continued production of inducible nitric oxide synthase (iNOS) with elevated levels observed at 7, 14 and 30 days post re-challenge. Interestingly, iNOS expression was significantly lower among challenged animals when compared to re-challenged groups. Furthermore, in vivo specific Ag re-challenge produced lower levels of arginase (Arg)-1 when compared with the challenged group. Taken together, these results indicate that repeated Ag-specific stimulation of adaptive immune responses leads to cumulative dysregulated microglial cell activation.

20.
Brain Sci ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827481

RESUMO

The role of select pro- and anti-inflammatory mediators in driving microglial cell polarization into classically (M1), or alternatively, (M2) activated states, as well as the subsequent differential responses of these induced phenotypes, was examined. Expression of PD-L1, MHC-II, MHC-I, arginase 1 (Arg-1), and inducible nitric oxide synthase (iNOS) was assessed using multi-color flow cytometry. We observed that both pro- and anti-inflammatory mediators induced PD-L1 expression on non-polarized microglia. Moreover, IFN-γ stimulated significant MHC class I and II expression on these cells. Interestingly, we observed that only IL-4 treatment induced Arg-1 expression, indicating M2 polarization. These M2 cells were refractory to subsequent depolarization and maintained their alternatively activated state. Furthermore, PD-L1 expression was significantly induced on these M2-polarized microglia after treatment with pro-inflammatory mediators, but not anti-inflammatory cytokines. In addition, we observed that only LPS induced iNOS expression in microglial cells, indicating M1 polarization. Furthermore, IFN-γ significantly increased the percentage of M1-polarized microglia expressing iNOS. Surprisingly, when these M1-polarized microglia were treated with either IL-6 or other anti-inflammatory cytokines, they returned to their non-polarized state, as demonstrated by significantly reduced expression of iNOS. Taken together, these results demonstrate differential responses of microglial cells to mediators present in dissimilar microenvironments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA