RESUMO
The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3'-untranslated region (3'-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Genoma Viral , Proteínas não Estruturais Virais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Animais , Camundongos , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas/genética , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/genética , Substituição de Aminoácidos , Cultura de Vírus/métodos , Encéfalo/virologia , Encéfalo/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Linhagem Celular , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-boxRESUMO
A full-length humanized chimeric antibody 10H10ch that specifically interacts with the surface glycoprotein E of flaviviruses was obtained. To construct it, we used variable fragments of the heavy and light chains of the monoclonal antibody 10H10 that form the active center of the antibody and a fragment of the constant part of the heavy chain of the human IgG1 antibody. The resulting full-length chimeric humanized antibody 10H10ch specifically interacted with the E protein of flaviviruses pathogenic to humans, such as tick-borne encephalitis, Zika, West Nile, and dengue viruses. An immunochemical assessment of the interaction constants of the 10H10ch antibody with a panel of native and recombinant flavivirus antigens by ELISA and biolayer interferometry showed that the dissociation constant (Kd) of the chimeric antibody is in the nanomolar region and is comparable to that of the high-affinity mouse monoclonal antibody 10H10. The possibility of using the resulting chimeric humanized antibody 10H10ch for the diagnosis, prevention, and treatment of various flavivirus infections is discussed.
RESUMO
A promising approach to the development of new means for preventing infection caused by tick-borne encephalitis virus can be DNA vaccines encoding polyepitope T-cell immunogens. A DNA vaccine pVAX-AG4-ub encoding an artificial polyepitope immunogen that includes cytotoxic and T-helper epitopes from the NS1, NS3, NS5, and E proteins of the tick-borne encephalitis virus has been obtained. The developed construct ensured the synthesis of the corresponding mRNAs in transfected eukaryotic cells. Immunization of mice with pVAX-AG4-ub induced the formation of a virus-specific T-cell response providing 50% protection from lethal infection with the virus.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Vacinas de DNA , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vacinas de DNA/genética , Vacinas Virais/genética , Linfócitos T , ImunizaçãoRESUMO
This paper reports the analysis of the nucleotide sequences of the 5'-untranslated region (5'-UTR) of tick-borne encephalitis virus (TBEV) genomic RNA isolated from 39 individual taiga ticks collected in several regions of Northern Eurasia. The sequences of 5'-UTRs of the Siberian and Far East TBEV genotypes were 89% and 95% identical to the prototype strains (Zausaev and 205), respectively. The detected nucleotide substitutions were typical for these two TBEV genotypes, which made possible unambiguous identification. Both conservative and variable motifs were detected in the 5'-UTR RNA. The B2, C1, and C2 elements of the Y-shaped 5'-UTR structure and the presumable viral RNA-dependent RNA-polymerase binding site were the most variable. The A2, CS A, CS Ð elements as well as the start codon were conservative. Interestingly, five substitutions in the 5'-UTR C1 variable element of the TBEVs isolated in different geographical regions were strictly conservative, while 11 different substitutions were detected in this element among the laboratory TBEV variants. A little less that a third of all nucleotide substitutions were mapped outside the main elements of the Y-shaped structure. In general, nucleotide substitutions were localized to stem structures, not being found in the hairpin regions of the TBEV 5'-UTR. The results indicated significant variability of the genomic RNA 5'-UTR in the TBEV laboratory strains and field isolates obtained from different geographical regions. It has been suggested that genetic variability of 5'-UTR is characteristic of the TBEV genome 5'-UTR organization and may serve as a structural basis for virus efficient replication in various avian, mammalian, and ixodic tick cells.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Sequência de Bases , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/genética , Genoma Viral/genética , Filogenia , RNA Viral/genéticaRESUMO
In this work we tested two reagent kits developed by us for detecting SARS-CoV-2 RNA using a fragment of the ORF1ab gene in digital PCR and real-time PCR formats. Data were obtained on the detection of SARS-CoV-2 virus RNA in nasopharyngeal swabs of patients with COVID-19 and asymptomatic carriers. The developed reagent kits provided 100% sensitivity and a detection limit of 103 GE / ml for qPCR, and at least 200 copies / ml of viral RNA when performing digital PCR. These methods were tested using a panel of 1,328 samples collected from patients with suspected COVID-19 at the beginning of 2020 in the Russian Federation. It has been shown that dPCR is more sensitive and can be used to analyze samples with low viral load, including those from patients without clinical symptoms. dPCR significantly improves the accuracy of laboratory research and significantly reduces the number of false negative results in the diagnosis of SARS-CoV-2. Determination of the concentration of SARS-CoV-2 RNA in patients with different clinical course of the disease showed that the concentration of viral RNA can sharply decrease in the first days of the disease. A low concentration of viral RNA in samples from patients is also characteristic of asymptomatic disease. Digital PCR provides a higher detection rate for asymptomatic cases, which is approximately 75% of those infected, as opposed to 45% for real-time PCR. The results obtained on the use of the digital PCR method for detecting SARS-CoV-2 RNA showed that this method is especially suitable for detecting RNA in case of its low concentration in contacts, as well as for monitoring changes in viral load in convalescent patients.
Assuntos
Infecções Assintomáticas , COVID-19/diagnóstico , Nasofaringe/virologia , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Teste de Ácido Nucleico para COVID-19 , Técnicas de Laboratório Clínico , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Federação RussaRESUMO
This study presents the results of laboratory trials of the reagent kit for the rapid detection of RNA of the Crimean-Congo hemorrhagic fever virus (CCHFV) using loop-mediated isothermal amplification with reverse transcription (RT-LAMP). The developed RT-LAMP reagent kit was used to detect the CCHFV and showed a sensitivity of 103 GE/ml of viral RNA, which is sufficient for detection of the CCHFV in the early stage of human infections. The kit showed high specificity and no cross-reactivity with viral panel from the State collection of viruses of the FBRI SRC VB «Vector¼ (arboviruses and hemorrhagic fever viruses). Laboratory trials of the RT-LAMP kit are showed a high analytical and diagnostic sensitivity and specificity for RNA detection of the CCHFV and high speed of the analysis (60-70 min with sample preparation) compared to real-time PCR. Approbation of the kit field version has showed the possibility of setting the RT-LAMP reaction and viral RNA detection without the using of analytical equipments.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/diagnóstico , Técnicas de Amplificação de Ácido Nucleico , Kit de Reagentes para Diagnóstico , Humanos , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa , Sensibilidade e EspecificidadeRESUMO
The article considers development of highly effective technique of detection of genetic material of ricketsia based on polymerase chain reaction in real-time using original primers to the most conservative sites of gene of citrate synthase (gItA). The analytical sensitivity of the developed polymerase chain reaction in real-time test permits to detect from 80 genome equivalents in analyzed sample during three hours. The high specificity of test-system is substantiated by detection of nucleotide sequences of amplificated fragments of gene gltA. The approbation ofthe polymerase chain reaction in real-time test is carried out on collection of 310 ticks of species I. persulcatus, I. pavlovskyi, D. reticulatus. It is demonstrated that the developed alternate ofprimers and probe permits with high degree of sensitivity and specifcity to detect DNA of different species of ricketsia widespread on territory of Russia (R. sibirica, R. raoultii, R. helvetica, R. tarasevichiae). The proposed polymerase chain reaction in real-time test can be appliedfor isolation of fragment of gene gltA with purpose for detecting nucleotide sequence and subsequent genetic typing of ricketsia. The application ofthe proposed technique can facilitate task of monitoring hot spots of ricketsiosis.
Assuntos
Proteínas de Bactérias/genética , Citrato (si)-Sintase/genética , DNA Bacteriano/genética , Ixodes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Rickettsia/genética , Animais , Primers do DNA/síntese química , Primers do DNA/química , Sondas de DNA/síntese química , Sondas de DNA/química , Expressão Gênica , Ixodes/química , Rickettsia/classificação , Rickettsia/isolamento & purificação , Federação Russa , Sensibilidade e EspecificidadeRESUMO
Sixty eight nucleotide sequences encoding protein E of the West Nile virus (WNV) were used for the phylogenetic analysis and estimation of the evolution rate of the WNV. Nucleotide substitution accumulation rate was evaluated as 2.5 x 10(-4) substitutions per site per year. Phylogenetic analysis and divergence time estimation carried out using the molecular clocks methodology showed that genotypes 1, 2, and 4 of the WNV circulated in the area of the European Russia with estimated divergence times from a common ancestor of approximately 2360, 2800, and 5950 years ago, respectively. The non-synonymous (dN) to the synonymous (dS) substitution values were found between 0.022-0.275 for the different WNV strains that were grouped by geographical and/or filogenetic characteristics. The highest dN/dS values were found in the group of WNV isolates coming from Russia and North America that have disseminated in these new regions over the past 14 years. Estimation of dN/dS for WNV shows that the dN/ dS value can be used as an indicator of the intraspecies variability and for evaluation of evolution rate for new isolates of WNV. This confirms the hypothesis about of the favorable conditions for the wide dissemination and rapid evolution of different' genotypes of WNV occurring from 2 up to 6 thousand years ago in modern geographical and climatic conditions.
Assuntos
Evolução Molecular , Vírus do Nilo Ocidental/genética , DNA Viral/química , DNA Viral/genética , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Vírus do Nilo Ocidental/classificaçãoRESUMO
The genetic diversity of the tick-borne encephalitis virus (TBEV) in the PCR-positive Taiga ticks collected in the Republic of Komi in 2010 was evaluated. The analyses of nucleotide sequences of the 5'-NCR fragments of viral genome from ticks had shown that 13 isolates of TBEV from 16 sequencing variants were represented by the highly pathogenic Far Eastern genotype of the TBEV and only 3 isolates were identified as the Siberian genotype of TBEV. The nucleotide sequences of 5'-NCR of viral genome strongly varied variable in individual ticks. Variability for the A1 element has been observed in all the tested samples, and for elements C1, B2, CS B--in more than 50%. A2 element and ATG codon of the 5'-NCR remained completely conservative. Computer simulation of conformations of the 5'-NCR of TBEV genome demonstrated the possibility of significant changes of the spatial structure of the 5'-NCR of viral genome in individual taiga ticks. The obtained data confirm the hypothesis that the variability in the 5'-NCR of TBEV genome can be crucial for efficient replication of TBEV in different hosts.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Variação Genética , Genoma Viral/fisiologia , Ixodes/virologia , Análise de Sequência de DNA , Animais , Federação RussaRESUMO
The role of birds in the focus of tick-borne infections was studied from 2006 to 2011. The frequency index of ticks carried by ground dwelling birds is about 49.7%. The index of their abundance is 3.8. The larvae of ticks have been found on birds in 43.8% of cases. Nymphs and adult ticks have been found in 39.9 and 16.3%, respectively. It was revealed that Ixodex pavlovskyi was transferred and dominated in the urban microfoci because of its ornithophily. The markers of infectious agents have been recorded in 42 of 60 bird species under study.
Assuntos
Ixodes/patogenicidade , Larva/patogenicidade , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/transmissão , Animais , Aves/virologia , Humanos , Ixodes/classificação , Federação Russa , Doenças Transmitidas por Carrapatos/virologia , Vírus/isolamento & purificação , Vírus/patogenicidadeRESUMO
UNLABELLED: Currently one of the most promising approaches in development of cancer virotherapy is based on the ability of oncolytic viruses to selective infection and lysis of tumor cells. AIM: The goal of the study was to identify and evaluate perspective oncolytic viruses capable of selectively destroying human glioma cells. PATIENTS AND METHODS: Original GB2m, GA14m and GB22m glioma cell cultures derived from patients were used for evaluating in vitro oncolytic activity of some typical orthopoxviruses, adenoviruses and parvoviruses. RESULTS: The oncolytic activity in the human glioma cell models was confirmed for LIVP and WR strains of vaccinia virus, Adel2 and Ad2del strains with deletions within E1B/55K gene and derived from human adenoviruses type 2 and 5, respectively. CONCLUSIONS: We consider these oncolytic viruses as promising agents for the treatment of human malignant glioma.
Assuntos
Glioma , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Adenoviridae/fisiologia , Técnicas de Cultura de Células , Glioma/terapia , Glioma/virologia , Humanos , Orthopoxvirus/fisiologia , Parvovirus/fisiologia , Células Tumorais Cultivadas/virologia , Fenômenos Fisiológicos ViraisRESUMO
Toxicity and antiviral activity of aqueous extracts from higher mushrooms such as Lentinula edodes (Berk.) Pegler (shiitake), Pleurotus ostreatus (Jacq.) P. Kumm. (oyster), Inonotus obliquus (Ach. ex Pers.) Pilát (chaga), Hydnellum compactum (Pers.) P. Karst. (compact tooth) were studied. In doses of 0.8 to 4.0 mg (dry weight) per mouse administered orally or intraperitoneally the extracts showed no acute toxicity. When the dose of the chaga extract was increased to 20 mg per mouse, a half of the animals died. Intraperitoneal administration of the aqueous extracts in a dose of 0.4-2 mg per mouse prior to the contamination by a single LD50 of Herpes simplex type 2 provided 100-percent survival of the animals exposed to the Lentinula edodes or Pleurotus ostreatus extracts and 90-percent survival of the animals exposed to the Inonotus obliquus or Hydnellum compactum extracts.
Assuntos
Agaricales/química , Misturas Complexas/administração & dosagem , Herpes Genital/tratamento farmacológico , Herpesvirus Humano 2 , Animais , Misturas Complexas/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , CamundongosRESUMO
INTRODUCTION: Kindia tick virus (KITV) is a novel segmented unclassified flavi-like virus of the Flaviviridae family. This virus is associated with ixodes ticks and is potentially pathogenic to humans. The main goal of this work was to search for structural motifs of viral polypeptides and to develop a 3D-structure for viral proteins of the flavi-like KITV. MATERIALS AND METHODS: The complete genome sequences for KITV, Zika, dengue, Japanese encephalitis, West Nile and yellow fever viruses were retrieved from GenBank. Bioinformatics analysis was performed using the different software packages. RESULTS: Analysis of the KITV structural proteins showed that they have no analogues among currently known viral proteins. Spatial models of NS3 and NS5 KITV proteins have been obtained. These models had a high level of topological similarity to the tick-borne encephalitis and dengue viral proteins. The methyltransferase and RNA-dependent RNA-polymerase domains were found in the NS5 KITV. The latter was represented by fingers, palm and thumb subdomains, and motifs A-F. The helicase domain and its main structural motifs IVI were identified in NS3 KITV. However, the protease domain typical of NS3 flaviviruses was not detected. The highly conserved amino acid motives were detected in the NS3 and NS5 KITV. Also, eight amino acid substitutions characteristic of KITV/2018/1 and KITV/2018/2 were detected, five of them being localized in alpha-helix and three in loops of nonstructural proteins. CONCLUSION: Nonstructural proteins of KITV have structural and functional similarities with unsegmented flaviviruses. This confirms their possible evolutionary and taxonomic relationships.
Assuntos
Dengue , Flaviviridae , Carrapatos , Infecção por Zika virus , Zika virus , Humanos , Animais , Carrapatos/genética , Carrapatos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Guiné , Flaviviridae/genética , Flaviviridae/metabolismo , Zika virus/genética , RNARESUMO
INTRODUCTION: Ixodes ticks are vectors for pathogens of many infectious diseases. Recently, during the study of Rhipicephalus geigyi ticks collected from livestock in the Republic of Guinea, a new multicomponent flavi-like RNA virus, called Kindia tick virus (KITV), was discovered with an unusual mechanism for the implementation of genetic information. The aim of the work is to detect and study the genetic diversity of KITV in ixodes ticks collected in the territory of the Kindia province of the Republic of Guinea. MATERIAL AND METHODS: In 2021, 324 specimens of ticks of the species Amblyomma variegatum, Rh. geigyi, Rh. annulatus, Rh. decoloratus, Rh. senegalensis were collected from cattle. The detection of viral RNA was carried out in individual samples of ticks by RT-PCR, followed by the determination of the nucleotide sequence and phylogenetic analysis. RESULTS AND DISCUSSION: KITV detection rates in ticks of the species Rh. geigyi was 12.2%, Rh. annulatus 4.4%, Rh. decoloratus 3.3%. However, the KITV genetic material has not been identified in Am. variegatum ticks, which are one of the dominant species in West Africa. For all virus isolates, a partial nucleotide sequences of each of the four viral segments (GenBank, OK345271OK345306) were determined. The phylogenetic analysis showed a high level of identity (98.599.8%) for each of the four segments of the viral genome with those previously found in the Republic of Guinea. The obtained KITV isolates are most genetically close to Mogiana tick virus, which was previously detected in South America in Rh. microplus ticks and significantly differed from other multicomponent viruses circulating in Europe and Asia, including the Russian Federation. CONCLUSION: KITV genetic material was found in three species of ixodid ticks collected from livestock in a number of prefectures of the Republic of Guinea. The infection rate in ticks was 3.312.2%. The continuation of research in this direction remains relevant.
Assuntos
Doenças dos Bovinos , Flaviviridae , Ixodes , Ixodidae , Infestações por Carrapato , Animais , Bovinos , Ixodes/genética , Guiné , Filogenia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Doenças dos Bovinos/epidemiologiaRESUMO
The problem of emerging viruses, their genetic diversity and viral evolution in nature are attracting more attention. The phylogenetic analysis and evaluationary rate estimation were made for pathogenic flaviviruses such as tick-borne encephalitis virus (TBEV) and Powassan (PV) circulated in natural foci in Russia. 47 nucleotide sequences of encoded protein E of the TBEV and 17 sequences of NS5 genome region of the PV have been used. It was found that the rate of accumulation of nucleotide substitutions for E genome region of TBEV was approximately 1.4 x 10(-4) and 5.4 x 10(-5) substitutions per site per year for NS5 genome region of PV. The ratio of non-synonymous nucleotide substitutions to synonymous substitution (dN/dS) for viral sequences were estimated of 0.049 for TBEV and 0.098 for PV. Maximum value dN/dS was 0.201-0.220 for sub-cluster of Russian and Canadian strains of PV and the minimum - 0.024 for cluster of Russian and Chinese strains of Far Eastern genotype TBEV. Evaluation of time intervals of evolutionary events associated with these viruses showed that European subtype TBEV are diverged from all-TBEV ancestor within approximately 2750 years and the Siberian and Far Eastern subtypes are emerged about 2250 years ago. The PV was introduced into natural foci of the Primorsky Krai of Russia only about 70 years ago and PV is a very close to Canadian strains of PV. Evolutionary picture for PV in North America is similar to evolution of Siberian and Far Eastern subtypes TBEV in Asia. The divergence time for main genetic groups of TBEV and PV are correlated with historical periods of warming and cooling. These allow to propose a hypothesis that climate changes were essential to the evolution of the flaviviruses in the past millenniums.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/virologia , Evolução Molecular , Proteínas do Envelope Viral/genética , Substituição de Aminoácidos/genética , Canadá , Europa (Continente) , Ásia Oriental , Variação Genética , Genótipo , Humanos , Filogenia , Federação Russa , SibériaRESUMO
Parvoviruses such as parvovirus H-1 (H-1PV) may selectively infect and lysis cancer cells. The parvoviruses also induce an immune system to eliminate the tumor cells through the formation of anti-cancer immunity. One of the possible mechanisms of antitumor activity is associated with the direct induction of apoptosis by parvoviral proteins NS1 and 11 kDa. Parvovirus-based vectors are promising for gene therapy of oncological diseases and genetic disorders in humans. Parvoviruses were successfully used for the experimental treatment on animal models of human glioma, neuroblastomas, lymphomas, pancreatic carcinoma, carcinomas and breast tumors. ParvOryx is the first oncolytic preparation constructed on the base of H-1PV; its phase I/IIa clinical trials in patients with glioblastoma multiforme are in process.
Assuntos
Parvovirus H-1 , Imunoterapia/métodos , Terapia Viral Oncolítica , Vírus Oncolíticos , Antineoplásicos/uso terapêutico , Citotoxicidade Imunológica , Feminino , Vetores Genéticos , Glioblastoma/imunologia , Glioblastoma/terapia , Parvovirus H-1/química , Humanos , Masculino , Neoplasias/imunologia , Neoplasias/terapia , Proteínas não Estruturais Virais/uso terapêuticoRESUMO
The investigation of cases of acute intestinal infections in the Sakhalin region of Russia in August, 2010 is described. Epidemiological and molecular biological studies were conducted. After initial PCR screening and determining the nucleotide sequences of the positive samples the following enteroviruses were found: Coxsackie A2 - 42 samples (45%), Coxsackie A4--31 sample (34%), Enterovirus 71--6 samples (6,5%), Coxsackievirus B5--6 samples (6,5%), Coxsackie B3--4 samples (4%) and Coxsackie B1--4 samples (4%). The phylogenetic analysis of sequences showed that the closest analogues for the nucleotide sequences of these genotypes were previously identified in Japan, Korea and China in 2000-2010.
Assuntos
Infecções por Coxsackievirus , Surtos de Doenças/estatística & dados numéricos , Reservatórios de Doenças , Enterovirus , Enteropatias , Doença Aguda , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Controle de Doenças Transmissíveis/organização & administração , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/fisiopatologia , Doenças Transmissíveis/virologia , Infecções por Coxsackievirus/epidemiologia , Infecções por Coxsackievirus/fisiopatologia , Infecções por Coxsackievirus/prevenção & controle , Infecções por Coxsackievirus/virologia , Reservatórios de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Enterovirus/classificação , Enterovirus/genética , Enterovirus/patogenicidade , Feminino , Humanos , Lactente , Enteropatias/epidemiologia , Enteropatias/fisiopatologia , Enteropatias/prevenção & controle , Enteropatias/virologia , Masculino , Federação Russa/epidemiologia , Análise de Sequência de RNA/métodos , Sorotipagem/métodosRESUMO
Thirty nine water soluble nitroxyl radicals of various classes, belonging to piperidine, pyrrolidine and imidazolidine series were synthesized. Twenty seven of them were cytotoxic in vitro with respect to the tumor cell culture A431. The CC50 of the most active nitroxyl radicals with respect to cells SW480 and A431 was within 0.16-2.5 mM at the selectivity index of 3.91-7.81 in relation to cytotoxicity of the compounds for the cells of the normal L68 phenotype and tumor cells. The tests on the antiviral activity showed that 16 out of 22 nitroxyl radicals had antiviral activity in Vero cell culture with respect to the West Nile virus and Herpes simplex virus of type II respectively. The EC50 ranged within 0.09-3.45 mM. Some of the nitroxyl radicals had only antiviral activity, but a number of the compounds had both cytotoxic properties and antiviral activity.
Assuntos
Antivirais/farmacologia , Citotoxinas/farmacologia , Radicais Livres/farmacologia , Herpes Genital/tratamento farmacológico , Herpesvirus Humano 2/metabolismo , Óxidos de Nitrogênio/farmacologia , Febre do Nilo Ocidental/tratamento farmacológico , Vírus do Nilo Ocidental/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Células VeroRESUMO
Mucosal immunity is realized through a structural and functional system called mucose-associated lymphoid tissue (MALT). MALT is subdivided into parts (clusters) depending on their anatomical location, but they all have a similar structure: mucus layer, epithelial tissue, lamina propria and lymphoid follicles. Plasma cells of MALT produce a unique type of immunoglobulins, IgA, which have the ability to polymerize. In mucosal immunization, the predominant form of IgA is a secretory dimer, sIgA, which is concentrated in large quantities in the mucosa. Mucosal IgA acts as a first line of defense and neutralizes viruses efficiently at the portal of entry, preventing infection of epithelial cells and generalization of infection. To date, several mucosal antiviral vaccines have been licensed, which include attenuated strains of the corresponding viruses: poliomyelitis, influenza, and rotavirus. Despite the tremendous success of these vaccines, in particular, in the eradication of poliomyelitis, significant disadvantages of using attenuated viral strains in their composition are the risk of reactogenicity and the possibility of reversion to a virulent strain during vaccination. Nevertheless, it is mucosal vaccination, which mimics a natural infection, is able to induce a fast and effective immune response and thus help prevent and possibly stop outbreaks of many viral infections. Currently, a number of intranasal vaccines based on a new vector approach are successfully undergoing clinical trials. In these vaccines, the safe viral vectors are used to deliver protectively significant immunogens of pathogenic viruses. The most tested vector for intranasal vaccines is adenovirus, and the most significant immunogen is SARSCoV-2 S protein. Mucosal vector vaccines against human respiratory syncytial virus and human immunodeficiency virus type 1 based on Sendai virus, which is able to replicate asymptomatically in cells of bronchial epithelium, are also being investigated.
Assuntos
Vacinas contra Influenza , Poliomielite , Vacinas Virais , Viroses , Administração Intranasal , Anticorpos Antivirais , Humanos , Imunidade nas Mucosas , Imunoglobulina A , Viroses/prevenção & controleRESUMO
INTRODUCTION: Yellow fever (YF) remains one of the most common natural focal infectious diseases in the world. In connection with the increasing tourist flow to countries endemic for YF, the discovery of stable populations of Aedes aegypti and Ae. albopictus which are the main vectors of the yellow fever virus (YFV), in the southern regions of Russia, and the fact that in medical institutions in our country it is possible to obtain a live attenuated vaccine against YF, but there is no way to evaluate the effectiveness of vaccination, the question arises of the development and implementation of diagnostic kits for detecting antibodies (AB) to the pathogen by enzyme immunoassay (ELISA).The aim of this study was to develop a method for detecting specific IgG antibodies to the E protein of YFV by ELISA and assessing its diagnostic characteristics. MATERIALS AND METHODS: A specific cDNA was synthesized by reverse transcription on an RNA template of YFV isolated on a cell culture of Aedes albopictus clone C6/36, and a fragment of the genome coding the YFV E protein was amplified and subsequently cloned into the plasmid pET160 (Thermo Fisher Scientific, USA). The resulting gene fragment was used as a DNA template to obtain a recombinant analog of the third domain of the YFV E protein in Escherichia coli cells (BL-21(DE3)). Next, the immunogenicity of the obtained antigen was evaluated and the analysis conditions were optimized. RESULTS: The optimal conditions for the production of the obtained recombinant E protein of YFV were determined, its specificity was confirmed by immunological methods (Western blot and ELISA), sorption buffers and blocking solutions were selected, and sensitivity and specificity of detection of antibodies to YFV using the recombinant antigen were assessed. CONCLUSION: A method for the detection of specific IgG antibodies to the YFV E protein by ELISA was developed. This diagnostic kit can be used both to study the protective properties of the YF vaccine and to detect imported cases of infection in non-endemic areas.