Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 307(2): G241-7, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24852567

RESUMO

Evidence has grown to support the efficacy of probiotics in the management of gastrointestinal disorders, many of which are associated with dysregulated fluid and electrolyte transport. A growing body of evidence now suggests that the host microbiota and probiotics can influence intestinal ion transport and that these effects often occur in a strain-dependent manner. In this study, we sought to investigate the effects of two therapeutically relevant organisms, Bifidobacterium infantis 35,624 and Lactobacillus salivarius UCC118, on small intestinal transit, fecal output and water content, transepithelial resistance (TER), and colonic secretomotor function. Mice fed either strain displayed significantly reduced small intestinal transit in vivo, though neither strain influenced fecal pellet output or water content. Colon from mice fed both organisms displayed increased colonic TER, without a concomitant change in the gene expression of the tight junction proteins claudin 1 and occludin. However, L. salivarius UCC118 selectively inhibited neurally evoked ion secretion in tissues from animals fed this particular probiotic. Consistent with this finding, the neurotoxin tetrodotoxin (TTx) significantly inhibited the short-circuit current response induced by L. salivarius UCC118 following addition to colonic preparations in Ussing chambers. Responses to B. infantis 35,624 also displayed sensitivity to TTx, although to a significantly lesser degree than L. salivarius UCC118. Both strains similarly inhibited cholinergic-induced ion transport after addition to Ussing chambers. Taken together, these data suggest that B. infantis 35,624 and L. salivarius UCC118 may be indicated in disorders associated with increased small intestinal transit, and, in particular for L. salivarius UCC118, neurally mediated diarrhea.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Colo/microbiologia , Intestino Delgado/microbiologia , Lactobacillus/crescimento & desenvolvimento , Probióticos , Animais , Claudina-1/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Defecação , Impedância Elétrica , Fezes/química , Fezes/microbiologia , Trânsito Gastrointestinal , Humanos , Secreções Intestinais/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Masculino , Camundongos , Ocludina/metabolismo , Tetrodotoxina/farmacologia , Fatores de Tempo , Água/metabolismo
2.
Can J Physiol Pharmacol ; 91(9): 663-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23984904

RESUMO

Host-microbe interactions have gained considerable attention in recent years with regards to their role in various organic disorders and diseases. In particular, research efforts have focused on the intestinal microbiota, where the largest and most diverse populations not only co-exist with the host, but also directly influence the state and function of the gastrointestinal (GI) tract. Moreover, both human and animal studies alike are now beginning to show a positive influence of probiotic bacteria on GI disorders associated with diarrhoea or constipation. Diarrheagenic GI diseases, such as those caused by Vibreo cholera or enterpathogenic Eschericia coli, have well-characterised interactions with the host that explain much of the observed symptoms, in particular severe diarrhoea. However, the mechanisms of action of nonpathogenic bacteria or probiotics on host physiology are less clearly understood. In the context of defining the mechanisms of action of probiotics in vitro, the Ussing chamber has proven to be a particularly useful tool. Here, we will present data from several studies that have defined molecular targets for microbes and putative probiotics in the regulation of intestinal secretory and absorptive function, and we will discuss these in the context of their application in pathogen- or inflammation-induced alterations in intestinal ion transport.


Assuntos
Cultura em Câmaras de Difusão , Gastroenteropatias/terapia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Probióticos , Animais , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Absorção Intestinal , Secreções Intestinais/metabolismo , Transporte de Íons , Transdução de Sinais
3.
J Neurogastroenterol Motil ; 29(1): 72-84, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36606438

RESUMO

Background/Aims: Chronic psychological stress affects gastrointestinal physiology which may underpin alterations in the immune response and epithelial transport, both functions are partly regulated by enteric nervous system. However, its effects on enteric neuroplasticity are still unclear. This study aims to investigate the effects of chronic unpredictable psychological stress on intestinal motility and prominent markers of enteric function. Methods: Adult male C57BL/6J mice were exposed to 19 day of unpredictable stress protocol schedule of social defeat and overcrowding. We investigated the effects on plasma corticosterone, food intake, and body weight. In vivo gastrointestinal motility was assessed by fecal pellet output and by whole-gastrointestinal transit (using the carmine red method). Tissue monoamine level, neural and glial markers, neurotrophic factors, monoamine signaling, and Toll-like receptor expression in the proximal and distal colon, and terminal ileum were also assessed. Results: Following chronic unpredictable psychological stress, stressed mice showed increased food intake and body weight gain (P < 0.001), and reduced corticosterone levels (P < 0.05) compared to control mice. Stressed mice had reduced stool output without differences in water content, and showed a delayed gastrointestinal transit compared to control mice (P < 0.05). Stressed mice exhibited decreased mRNA expression of tyrosine hydroxylase (Th), brain-derived neurotrophic factor (Bdnf) and glial cell-derived neurotrophic factor (Gdnf), as well as Toll-like receptor 2 (Tlr2) compared to control (P < 0.05), only proximal colon. These molecular changes in proximal colon were associated with higher levels of monoamines in tissue. Conclusion: Unpredictable psychological chronic stress induces region-specific impairment in monoamine levels and neuroplasticity markers that may relate to delayed intestinal transit.

4.
Psychoneuroendocrinology ; 60: 58-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26135201

RESUMO

Early-life adverse experiences, including prenatal stress (PNS), are associated with a higher prevalence of neurodevelopmental, cardiovascular and metabolic disorders in affected offspring. Here, in a rat model of chronic PNS, we investigate the impact of late gestational stress on physiological outcomes in adulthood. Sprague-Dawley pregnant dams were subjected to repeated restraint stress from embryonic day 14 to day 20, and their male offspring were assessed at 4 months of age. PNS induced an exaggeration of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, as well as an elevation of blood pressure and impairment of cognitive function. Altered respiratory control was also observed, as demonstrated by increased variability in basal respiratory frequency and abnormal frequency responses to both hypoxic and hypercapnic challenges. PNS also affected gastrointestinal neurodevelopment and function, as measured by a decrease in the innervation density of distal colon and an increase in the colonic secretory response to catecholaminergic stimulation. Finally, PNS induced long lasting alterations in the intestinal microbiota composition. 16S rRNA gene 454 pyrosequencing revealed a strong trend towards decreased numbers of bacteria in the Lactobacillus genus, accompanied by elevated abundance of the Oscillibacter, Anaerotruncus and Peptococcus genera in PNS animals. Strikingly, relative abundance of distinct bacteria genera significantly correlated with certain respiratory parameters and the responsiveness of the HPA axis to stress. Together, these findings provide novel evidence that PNS induces long-term maladaptive alterations in the gastrointestinal and respiratory systems, accompanied by hyper-responsiveness to stress and alterations in the gut microbiota.


Assuntos
Colo/microbiologia , Colo/fisiopatologia , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico/microbiologia , Estresse Psicológico/fisiopatologia , Animais , Pressão Sanguínea , Cognição , Feminino , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Atividade Motora , Sistema Hipófise-Suprarrenal/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/psicologia , RNA Bacteriano/análise , RNA Ribossômico 16S/metabolismo , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória , Restrição Física , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA