Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 19: 1976-1985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841748

RESUMO

With the global epidemic of SARS-CoV-2, it is important to effectively monitor the variation, haplotype subgroup epidemic trends and key mutations of SARS-CoV-2 over time. This is of great significance to the development of new vaccines, the update of therapeutic drugs, and the improvement of detection methods. The AutoVEM tool developed in the present study could complete all mutations detections, haplotypes classification, haplotype subgroup epidemic trends and candidate key mutations analysis for 131,576 SARS-CoV-2 genome sequences in 18 h on a 1 core CPU and 2 GB RAM computer. Through haplotype subgroup epidemic trends analysis of 131,576 genome sequences, the great significance of the previous 4 specific sites (C241T, C3037T, C14408T and A23403G) was further revealed, and 6 new mutation sites of highly linked (T445C, C6286T, C22227T, G25563T, C26801G and G29645T) were discovered for the first time that might be related to the infectivity, pathogenicity or host adaptability of SARS-CoV-2. In brief, we proposed an integrative method and developed an efficient automated tool to monitor haplotype subgroup epidemic trends and screen for the candidate key mutations in the evolution of SARS-CoV-2 over time for the first time, and all data could be updated quickly to track the prevalence of previous key mutations and new candidate key mutations because of high efficiency of the tool. In addition, the idea of combinatorial analysis in the present study can also provide a reference for the mutation monitoring of other viruses.

2.
Int J Infect Dis ; 100: 164-173, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32866640

RESUMO

OBJECTIVES: To further reveal the phylogenetic evolution and molecular characteristics of the whole genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on a large number of genomes and provide a basis for the prevention and treatment of SARS-CoV-2. METHODS: Various evolution analysis methods were employed. RESULTS: The estimated ratio of the rates of non-synonymous to synonymous changes (Ka/Ks) of SARS-CoV-2 was 1.008 or 1.094 based on 622 or 3624 SARS-CoV-2 genomes and nine key specific sites of high linkage, and four major haplotypes were found: H1, H2, H3 and H4. The results of Ka/Ks, detected population size and development trends of each major haplotype showed that H3 and H4 subgroups were going through a purify evolution and almost disappeared after detection, indicating that they might have existed for a long time. The H1 and H2 subgroups were going through a near neutral or neutral evolution and globally increased with time, and the frequency of H1 was generally high in Europe and correlated with the death rate (r >0.37), suggesting that these two haplotypes might relate to the infectivity or pathogenicity of SARS-CoV-2. CONCLUSIONS: Several key specific sites and haplotypes related to the infectivity or pathogenicity of SARS-CoV-2, and the possible earlier origin time and place of SARS-CoV-2 were indicated based on the evolution and epidemiology of 16,373 SARS-CoV-2 genomes.


Assuntos
COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , Europa (Continente)/epidemiologia , Evolução Molecular , Haplótipos , Humanos , Pandemias , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA