RESUMO
BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTAâACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTAâACC pathway signalling in chronic nicotine-elicited allodynia.
Assuntos
Giro do Cíngulo , Nicotina , Humanos , Camundongos , Animais , Nicotina/farmacologia , Hiperalgesia/induzido quimicamente , Dopamina/metabolismo , DorRESUMO
BACKGROUND: Long-term smoking is a risk factor for chronic pain, and chronic nicotine exposure induces pain-like effects in rodents. The anterior cingulate cortex (ACC) has been demonstrated to be associated with pain and substance abuse. This study aims to investigate whether ACC microglia are altered in response to chronic nicotine exposure and their interaction with ACC neurons and subsequent nicotine-induced allodynia in mice. METHODS: We utilized a mouse model that was fed nicotine water for 28 days. Brain slices of the ACC were collected for morphological analysis to evaluate the impacts of chronic nicotine on microglia. In vivo calcium imaging and whole-cell patch clamp were used to record the excitability of ACC glutamatergic neurons. RESULTS: Compared to the vehicle control, the branch endpoints and the length of ACC microglial processes decreased in nicotine-treated mice, coinciding with the hyperactivity of glutamatergic neurons in the ACC. Inhibition of ACC glutamatergic neurons alleviated nicotine-induced allodynia and reduced microglial activation. On the other hand, reactive microglia sustain ACC neuronal excitability in response to chronic nicotine, and pharmacological inhibition of microglia by minocycline or liposome-clodronate reduces nicotine-induced allodynia. The neuron-microglia interaction in chronic nicotine-induced allodynia is mediated by increased expression of neuronal CX3CL1, which activates microglia by acting on CX3CR1 receptors on microglial cells. CONCLUSION: Together, these findings underlie a critical role of ACC microglia in the maintenance of ACC neuronal hyperactivity and resulting nociceptive hypersensitivity in chronic nicotine-treated mice.
Assuntos
Hiperalgesia , Neuralgia , Nicotina , Animais , Camundongos , Giro do Cíngulo/metabolismo , Hiperalgesia/induzido quimicamente , Microglia/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Nicotina/toxicidadeAssuntos
Dor Crônica , Hiperalgesia , Giro do Cíngulo , Humanos , Células Mieloides , Neurônios , DorRESUMO
This study aimed at investigating the biosorption of copper(II) from aqueous solutions by sclerotiogenic Aspergillus oryzae G15. Potentiometric titration analysis results indicated that carboxyl group was mainly responsible for Cu(II) adsorption. Sclerotia were a better biosorbent than mycelia, which could be ascribed to the higher amount of carboxyl sites exposed after differentiation. Langmuir isotherm model fitted well the absorption process of mycelia and sclerotia with the maximum theoretical sorption capacities of 35.34 and 73.53 mg/g, respectively. Scanning electron microscopy coupled with energy dispersive X-ray analysis confirmed that there was surface biosorption of Cu(II) on the adsorbents. Based on the fourier transform infrared spectroscopy analyses results, it could be proposed that the increased sorption capacity of sclerotia was due to increased functional groups related to the biosorption process. Cu(II)-loaded biosorbents could be regenerated and reused, which indicated that A. oryzae G15 could be considered as an alternative for removing Cu(II) from wastewater.
Assuntos
Aspergillus oryzae/metabolismo , Cobre/metabolismo , Adsorção , Cobre/química , Concentração de Íons de Hidrogênio , Microscopia Eletroquímica de Varredura , Poluentes Químicos da Água/químicaRESUMO
Penicillium thomii Q1 strain was able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. The aim of this work was to determine the effects of copper-induced oxidative stress on the sclerotial differentiation, biosynthesis of some endogenous antioxidants, and the activities of some antioxidative enzymes of Q1 strain. The results showed that the oxidative stress induced by copper was clearly dependent on the CuSO4 concentrations in media, and characterized by the initiation of lipid peroxidation. Under the copper-induced oxidative stress conditions, the time of exudates initiation, sclerotial initiation and sclerotial maturation of Q1 strain were advanced in 1-2 days. The analytical results of sclerotial biomass, carotenoids, and ascorbate contents showed that copper-induced oxidative stress favored the sclerotial differentiation and biosynthesis of carotenoids and ascorbate. The oxidative stress induced by a lower amount of CuSO4 in media could enhance significantly the superoxide dismutase and catalase activities of Q1 strain.
Assuntos
Antioxidantes/metabolismo , Cobre/metabolismo , Micélio/metabolismo , Penicillium/metabolismo , Ácido Ascórbico/biossíntese , Biomassa , Carotenoides/biossíntese , Catalase/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Superóxido Dismutase/metabolismoRESUMO
Penicillium thomii PT95 strain was able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. The aim of this work was to determine the effects of copper-induced oxidative stress on the sclerotial differentiation and antioxidant properties of PT95 strain. The results showed that the time of exudates initiation, sclerotial initiation and sclerotial maturation of PT95 strain were advanced in 1-2 days under the copper-induced oxidative stress growth conditions. The analytical results of sclerotial biomass, carotenoids content in sclerotia showed that copper-induced oxidative stress favored the sclerotial differentiation and biosynthesis of carotenoids. Under the copper-induced oxidative stress growth conditions, the total phenolics content and DPPH free radical scavenging activity of sclerotia of this fungus were decreased as compared with the control. However, the oxidative stress induced by a lower amount of CuSO4 in media could enhance significantly the reducing power of sclerotia.
Assuntos
Antioxidantes/metabolismo , Carotenoides/metabolismo , Sulfato de Cobre/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Sequência de Bases , Biomassa , Meios de Cultura/química , DNA Fúngico , Dados de Sequência Molecular , Penicillium/classificação , Fenóis/metabolismo , Microbiologia do SoloRESUMO
Europium doped CaMoO4 and bismuth co-doped CaMoO4 : Eu3+ phosphors were prepared via microemulsion-hydrothermal method. The structure, morphology and luminescence properties of samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescence spectroscopy, respectively. The XRD patterns of as-prepared samples were in agreement with the PDF # 29-0351 of CaMoO4, which indicated that the phosphor possessed tetragonal crystal structure. SEM images showed that the samples were basically flake in shape and their average size was 1.5-2.5 microm. The critical molar concentration of activator (Eu3+) in CaMoO4 : Eu3+ was 5%, and the predominant peak of CaMoO4 : Eu3+ located at 616 nm, corresponding to the 5D0 -->7 F2 electronic dipole transition of Eu3+. The photoluminescence color can be tuned from orange-yellow (0.514, 0.537) to white (0.339, 0.333) by adjusting the doping concentrations of Eu3+ ions. To enhance the red emission intensity of Eu3+, Bi3+ was used to co-dope CaMoO4 : Eu3+ as sensitizers. When the concentration of Bi3+ is 3%, luminescence intensity was maximum. The chromaticity coordinates (CIE) varied from orange (0.497, 0.347) to red (0.585, 0.349) with increasing the content of Bi3+.
RESUMO
NaYF4 : Yb3+, Er3+, Tm3+ nanoparticles were prepared by microemulsion-hydrothermal method. Crystal phase, morphology and structure of the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The luminescence properties were studied by up-conversional fluorescence spectroscopy. The XRD patterns of as-prepared samples were in agreement with the PDF # 77-2042 of cubic NaYF4. SEM images of the particles showed that the samples were cotton-like spherical in shape and which were assembled by smaller nano-particles. The average size was 120 nm, while the shape was regular and the particle size was homogeneous. Under the excitation of 980 nm, the as-prepared particles could emit blue (438 and 486 nm), green (523 and 539 nm) and red (650 nm) light simultaneously. It can be seen from the color coordinates figure (CIE) that when doping concentration ratio of Tm3+ and E3+ increased from 0 to 2, the whole emitting light color of samples movedto green region. While the ratio was 1 : 1, pseudo white light was obtained. As the ratio changed from 2 to 7, the luminous color was moved to red region.
RESUMO
Cell therapies and regenerative medicine interventions require an adequate source of therapeutic cells. Here, we demonstrate that constructing in vivo osteo-organoids by implanting bone morphogenetic protein-2-loaded scaffolds into the internal muscle pocket near the femur of mice supports the growth and subsequent harvest of therapeutically useful cells including hematopoietic stem/progenitor cells (HSPCs), mesenchymal stem cells (MSCs), lymphocytes, and myeloid cells. Profiling of the in vivo osteo-organoid maturation process delineated three stages-fibroproliferation, osteochondral differentiation, and marrow generation-each of which entailed obvious changes in the organoid structure and cell type distribution. The MSCs harvested from the osteochondral differentiation stage mitigated carbon tetrachloride (CCl4)-induced chronic liver fibrosis in mice, while HSPCs and immune cells harvested during the marrow generation stage rapidly and effectively reconstituted the impaired peripheral and solid immune organs of irradiated mice. These findings demonstrate the therapeutic potentials of in vivo osteo-organoid-derived cells in cell therapies.
Assuntos
Células-Tronco Hematopoéticas , Fígado , Animais , Camundongos , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , OrganoidesRESUMO
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Assuntos
Fosfoenolpiruvato Carboxiquinase (ATP) , Vibrioses , Animais , Filogenia , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Gluconeogênese , Sequência ConservadaRESUMO
Esophageal Cancer-Related Gene 4 (Ecrg4) expressed in cardiomyocytes and the cardiac conduction system is downregulated during cardiac ischemia and atrial fibrillation. To explore whether Ecrg4 plays any role in doxorubicin (DOX)-induced cardiotoxicity. Rats and neonatal rat cardiomyocytes (NRCMs) were employed to study the effect of DOX on Ecrg4 transcription. Bioinformatics combined with promoter analysis were used to map the rat Ecrg4 promoter. ChIP assay was used to evaluate the binding of Sp1 to the Ecrg4 promoter. Transient transfection was used to study the effect of Sp1 on the expression of endogenous Ecrg4. DOX decreased endogenous Ecrg4 gene expression in the heart and cultured NRCMs. In silico analysis showed that the 5'UTR immediately upstream of the start codon ATG, harbors a putative promoter that is GC-rich, and contains CpG islands, multiple overlapping Sp1sites. Transcription is initiated mainly on the 'C' at - 15. Serial 5'-deletion combined with dual-luciferase assays showed that the rat Ecrg4 core promoter resides at - 1/- 800. Sp1 transactivated Ecrg4 gene, which was almost abolished by DOX. Furthermore, ChIP assay showed that Sp1 specifically bound to the Ecrg4 promoter was interrupted by DOX. Finally, DOX suppressed Sp1 protein expression, and restoration of Sp1 increased Ecrg4 expression that was resistant to DOX-induced Ecrg4 downregulation. Importantly, cardiomyocyte-specific loss of Ecrg4 significantly enriched the differentially expressed proteins in the signaling pathways commonly involved in DOX-induced cardiotoxicity. Our results indicate that Sp1 mediates DOX-induced suppression of Ecrg4, which may contribute indirectly to its cardiotoxicity.
Assuntos
Antibióticos Antineoplásicos , Cardiotoxicidade , Neoplasias Esofágicas , Miócitos Cardíacos , Animais , Antibióticos Antineoplásicos/efeitos adversos , Apoptose , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Neoplasias Esofágicas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , RatosRESUMO
Background and Objectives: Although human-induced pluripotent stem cells (hiPSC) can be efficiently differentiated into cardiomyocytes (CMs), the heterogeneity of the hiPSC-CMs hampers their applications in research and regenerative medicine. Retinoic acid (RA)-mediated signaling pathway has been proved indispensable in cardiac development and differentiation of hiPSC toward atrial CMs. This study was aimed to test whether RA signaling pathway can be manipulated to direct the differentiation into sinoatrial node (SAN) CMs. Methods and Results: Using the well-characterized GiWi protocol that cardiomyocytes are generated from hiPSC via temporal modulation of Wnt signaling pathway by small molecules, RA signaling pathway was manipulated during the differentiation of hiPSC-CMs on day 5 post-differentiation, a crucial time point equivalent to the transition from cardiac mesoderm to cardiac progenitor cells in cardiac development. The resultant CMs were characterized at mRNA, protein and electrophysiology levels by a combination of qPCR, immunofluorescence, flow cytometry, and whole-cell patch clamp. The results showed that activation of the RA signaling pathway biased the differentiation of atrial CMs, whereas inhibition of the signaling pathway biased the differentiation of sinoatrial node-like cells (SANLCs). Conclusions: Our study not only provides a novel and simple strategy to enrich SANLCs but also improves our understanding of the importance of RA signaling in the differentiation of hiPSC-CMs.
RESUMO
Primary and secondary hyperalgesia develop in response to chronic joint inflammation due to peripheral and central mechanisms. Synovial macrophage and spinal microglia are involved in pain sensitization in arthritis. The level of angiotensin II type 2 receptor (AT2R) is related to the severity of arthritis. This study aimed to determine the role of AT2R in primary and secondary hyperalgesia in joint inflammatory pain in mice. After intra-articular CFA injection, primary hyperalgesia in the ipsilateral knee joint was measured by pressure application meter and gait analysis, secondary hypersensitivity in ipsilateral hind-paw was measured by von-Frey and Hargreaves tests following a combination of global AT2R-deficient (Agtr2-/-) mice and AT2R pharmacological agonist C21. Synovial macrophage and spinal microglia were collected for flow cytometry. Morphological reconstruction of microglia was detected by immunostaining. AT2R expression was investigated by quantitative polymerase chain reaction and western blot. Neuronal hyperactivity was evaluated by c-Fos and CGRP immunostaining. We found that pain hypersensitivity and synovial inflammation in Agtr2-/- mice were significantly exacerbated compared with wild-type mice; conversely, systemically administrated C21 attenuated both of the symptoms. Additionally, spinal microglia were activated, and an abundant increase of spinal AT2R was expressed on activated microglia in response to peripheral joint inflammation. Intrathecally-administrated C21 reversed the secondary hypersensitivity, accompanied by alleviation of spinal microglial activation, spinal neuronal hyperactivity, and calcitonin gene-related peptide content. These findings revealed a beneficial role of AT2R activating stimulation against pain hypersensitivity in joint inflammatory pain via direct modulation of synovial macrophage and spinal microglial activity.
Assuntos
Artrite , Receptor Tipo 2 de Angiotensina , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Imidazóis , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/metabolismo , Medula Espinal/metabolismo , Sulfonamidas , TiofenosRESUMO
BACKGROUND: Treatment of chronic pain is challenged by concurrent anxiety symptoms. Dexmedetomidine is known to produce sedation, analgesia, and anxiolysis. However, the neural mechanism of dexmedetomidine-elicited anxiolysis remains elusive. Here, we aimed to test the hypothesis that the anterior cingulate cortex might be involved in dexmedetomidine-induced anxiolysis in pain. METHODS: A common peroneal nerve ligation mouse model was used to test the dexmedetomidine-induced analgesia and anxiolysis by assessing mechanical allodynia, open-field, light-dark transition, and acoustic startle reflex tests. In vivo calcium signal fiber photometry and ex vivo whole-cell patch-clamp recordings were used to measure the excitability of glutamatergic neurons in anterior cingulate cortex. Modulation of glutamatergic neurons was performed by chemogenetic inhibition or activation via viral injection. RESULTS: Compared with vehicle, dexmedetomidine (4 µg/kg) alleviated mechanical allodynia (P < 0.001) and anxiety-like behaviors (P < 0.001). The glutamatergic neurons' excitability after dexmedetomidine administration was lower than that of the vehicle group (P = 0.001). Anxiety-like behaviors were rescued by inhibiting glutamatergic neurons in the model mice. Nociception-related anxiety-like behavior was induced by activation of glutamatergic neurons, which was rescued by dexmedetomidine. CONCLUSIONS: The reduction in glutamatergic neuronal activity in anterior cingulate cortex may be involved in dexmedetomidine-elicited anxiolysis in chronic pain.
Assuntos
Dor Crônica , Dexmedetomidina , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Giro do Cíngulo , Hiperalgesia , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ansiedade/tratamento farmacológico , NeurôniosRESUMO
BACKGROUND AND OBJECTIVES: Manipulating different signaling pathways via small molecules could efficiently induce cardiomyocytes from human induced pluripotent stem cells (hiPSC). However, the effect of transcription factors on the hiPSC-directed cardiomyocytes differentiation remains unclear. Transcription factor, p53 has been demonstrated indispensable for the early embryonic development and mesendodermal differentiation of embryonic stem cells (ESC). We tested the hypothesis that p53 promotes cardiomyocytes differentiation from human hiPSC. METHODS AND RESULTS: Using the well-characterized GiWi protocol that cardiomyocytes are generated from hiPSC via temporal modulation of Wnt signaling pathway by small molecules, we demonstrated that forced expression of p53 in hiPSC remarkably improved the differentiation efficiency of cardiomyocytes from hiPSC, whereas knockdown endogenous p53 decreased the yield of cardiomyocytes. This p53-mediated increased cardiomyocyte differentiation was mediated through WNT3, as evidenced by that overexpression of p53 upregulated the expression of WNT3, and knockdown of p53 decreased the WNT3 expression. Mechanistic analysis showed that the increased cardiomyocyte differentiation partially depended on the amplified mesendodermal specification resulted from p53-mediated activation of WNT3-mediated Wnt signaling. Consistently, endogenous WNT3 knockdown significantly ameliorated mesendodermal specification and subsequent cardiomyocyte differentiation. CONCLUSIONS: These results provide a novel insight into the potential effect of p53 on the development and differentiation of cardiomyocyte during embryogenesis.
RESUMO
Exosome is a promising next generation nano-based drug delivery vehicle. However, the unknown molecular mechanisms underlying its natural tissue tropism and the relatively low quantity of naturally enriched molecules of therapeutic value hamper exosome's clinical application. The aim of the research was to create a targeted and highly efficacious exosome formulation for the treatment of Alzheimer's disease (AD). Genetic engineering techniques combined with co-transfection of parental cells were employed to create an exosome formulation that displays RVG peptide on its surface targeting α7-nAChR and simultaneously enriches a neprilysin variant with increased specificity and efficacy in degrading ß amyloid peptide (Aß). The exosome formulation was preferentially internalised into cell lines in an α7-nAChR expression level-dependent manner. When incubated with Aß-producing N2a cells, it significantly decreased intracellular and secreted Aß40 levels, a potency that is superior to exosomes derived from adipose-derived stem cell. When systemically administered into mice, the exosome formulation was preferentially targeted to the hippocampus region of the brain and significantly decreased the expression of proinflammatory genes, IL1α, TNFα and NF-κB, and simultaneously increased the expression of anti-inflammatory gene, IL10. Our exosome formulation may be explored as an over-the-counter treatment for AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Exossomos/metabolismo , Glicoproteínas/administração & dosagem , Neprilisina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Proteínas Virais/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Engenharia Genética/métodos , Glicoproteínas/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neprilisina/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Virais/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismoRESUMO
Research and development of innovative targeted therapies is a great challenge in the fight against cancer. Although many treatment methods are currently available, there is no simple and effective system for promptly conducting anti-cancer drug screening and dose-response evaluation of the cancer patients to the drug. Herein, we developed an easy and compact flow rate independent microfluidic chip that can rapidly construct three concentration gradients of multiple solutes based on Dean flow under a wide range of flow rates. Chemical gradient dynamics were investigated systematically and quantitatively. Three stable, accurate, and controllable drug gradients were generated to evaluate treatments of two tumor cell lines (MCF-7 and HepG2). Results showed the dose- and time-dependent antitumor effects of the drugs, indicating the suitability of the proposed system to evaluate the individual actions and interactions of the anti-cancer drugs (doxorubicin and cisplatin) on one tumor cell line under the same conditions. In addition, cell viability in the microfluidic chip under gradient conditions showed a linear relationship to the viability of the traditional culture experiment. In summary, our microfluidic device can be used to develop insensitive techniques to operational conditions for simultaneously establishing multi-drug concentration gradients, which has the potential to promote the development of specific drug screening tools for targeting multiple vulnerabilities of tumor cells and evaluating the most effective personalized treatment technique.
Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Dispositivos Lab-On-A-Chip , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas , Medicina de PrecisãoRESUMO
Malva vein clearing virus (MVCV) is a member of the Potyvirus species, and has a negative impact on the aesthetic development of Alcea rosea. It was first reported in Germany in 1957, but its complete genome sequence data are still scarce. In the present work, A. rosea leaves with vein-clearing and mosaic symptoms were sampled and analyzed with small RNA deep sequencing. By denovo assembly the raw sequences of virus-derived small interfering RNAs (vsiRs) and whole genome amplification of malva vein cleaning virus SX strain (MVCV-SX) by specific primers targeting identified contig gaps, the full-length genome sequences (9,645 nucleotides) of MVCV-SX were characterized, constituting of an open reading frame that is long enough to encode 3,096 amino acids. Phylogenetic analysis showed that MVCV-SX was clustered with euphorbia ringspot virus and yam mosaic virus. Further analyses of the vsiR profiles revealed that the most abundant MVCV-vsiRs were between 21 and 22 nucleotides in length and a strong bias was found for "A" and "U" at the 5'-terminal residue. The results of polarity assessment indicated that the amount of sense strand was almost equal to that of the antisense strand in MVCV-vsiRs, and the main hot-spot region in MVCV-SX genome was found at cylindrical inclusion. In conclusion, our findings could provide new insights into the RNA silencing-mediated host defence mechanism in A. rosea infected with MVCV-SX, and offer a basis for the prevention and treatment of this virus disease.
RESUMO
Aspergillus oryzae G15 was cultured on Czapek yeast extract agar medium containing different concentrations of copper and lead to investigate the mechanisms sustaining metal tolerance. The effects of heavy metals on biomass, metal accumulation, metallothionein (MT), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were evaluated. Cu and Pb treatment remarkably delayed sclerotial maturation and inhibited mycelial growth, indicating the toxic effects of the metals. Cu decreased sclerotial biomass, whereas Pb led to an increase in sclerotial biomass. G15 bioadsorbed most Cu and Pb ions on the cell surface, revealing the involvement of the extracellular mechanism. Cu treatment significantly elevated MT level in mycelia, and Pb treatment at concentrations of 50-100 mg/L also caused an increase in MT content in mycelia. Both metals significantly increased MDA level in sclerotia. The variations in MT and MDA levels revealed the appearance of heavy metal-induced oxidative stress. The activities of SOD, CAT, and POD varied with heavy metal concentrations, which demonstrated that tolerance of G15 to Cu and Pb was associated with an efficient antioxidant defense system. In sum, the santioxidative detoxification system allowed the strain to survive in high concentrations of Cu and Pb. G15 depended mostly on sclerotial differentiation to defend against Pb stress.