Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 84(22): 14394-14406, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31646860

RESUMO

This work discloses a continuous flow carbonylation reaction using iron pentacarbonyl as source of CO. The described transformation using this surrogate was designed for use in commonly accessible flow equipment. Optimized conditions were applied to a scalable synthesis of the natural compound isolated from perianal glandular pheromone secretion of the African civet cat. In addition, a flow Pd-catalyzed carbonylation of aryl halides is successfully reported.

2.
ChemSusChem ; 12(1): 326-337, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30300970

RESUMO

A continuous-flow protocol utilizing syngas (CO and H2 ) was developed for the palladium-catalyzed reductive carbonylation of (hetero)aryl bromides to their corresponding (hetero)aryl aldehydes. The optimization of temperature, pressure, catalyst and ligand loading, and residence time resulted in process-intensified flow conditions for the transformation. In addition, a key benefit of investigating the reaction in flow is the ability to precisely control the CO-to-H2 stoichiometric ratio, which was identified as having a critical influence on yield. The protocol proceeds with low catalyst and ligand loadings: palladium acetate (1 mol % or below) and cataCXium A (3 mol % or below). A variety of (hetero)aryl bromides at a 3 mmol scale were converted to their corresponding (hetero)aryl aldehydes at 12 bar pressure (CO/H2 =1:3) and 120 °C reaction temperature within 45 min residence time to afford products mostly in good-to-excellent yields (17 examples). In particular, a successful scale-up was achieved over 415 min operation time for the reductive carbonylation of 2-bromo-6-methoxynaphthalene to synthesize 3.8 g of 6-methoxy-2-naphthaldehyde in 85 % isolated yield. Studies were conducted to understand catalyst decomposition within the reactor by using inductively coupled plasma-mass spectrometry (ICP-MS) analysis. The palladium could easily be recovered using an aqueous nitric acid wash post reaction. Mechanistic aspects and the scope of the transformation are discussed.

3.
Org Lett ; 17(22): 5618-21, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26555577

RESUMO

An efficient protocol for the generation of carbon monoxide by Zn-mediated reduction of oxalyl chloride has been developed. Oxalyl chloride was applied as an extremely effective substitute for toxic gaseous CO in the palladium-catalyzed alkoxy-/amino-/hydrogen-/hydroxycarbonylation processes providing industrially interesting esters, amides, aldehydes, and carboxylic acids in good to excellent yields. This new procedure can be applied to various carbonylation reactions in the presence of a transition metal catalyst under mild conditions and with a stoichiometric amount of CO source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA