Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Tumour Biol ; 37(8): 10775-84, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26873489

RESUMO

Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn(®) software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Catalase/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Dissulfeto de Glutationa/análise , Humanos , Peróxido de Hidrogênio/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Oxirredução , Compostos de Sulfidrila/análise
2.
Life Sci Alliance ; 5(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844982

RESUMO

The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1-PRKN pathway leading to mitophagy. We provide a detailed cell biological characterization of a benzosulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition after mitochondrial depolarization. This includes enhancement of TOMM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson disease patients carrying loss of function PRKN mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1-independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U2OS cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover.


Assuntos
Proteínas Mitocondriais/antagonistas & inibidores , Mitofagia/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Mitofagia/genética , Inibidores de Proteases/química , Especificidade por Substrato , Ubiquitinação
3.
Sci Rep ; 10(1): 15485, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968089

RESUMO

Mutations in PRKN are the most common cause of early onset Parkinson's disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in PRKN mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from PRKN mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Fibroblasts from 4 controls and 4 PRKN mutant patients were transformed into induced neuronal progenitor cells and subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species production quantification. Direct conversion of control and PRKN mutant patient fibroblasts results in induced neuronal progenitor and their differentiation yields high percentage of dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Our results show that when pre-neurons are glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant patient neurons. These changes correlate with changes in mitochondrial function and morphology; resulting in lower neuron yield and altered neuronal morphology. Induced neuronal progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are identified. These data provide insight into cell specific effects of PRKN mutations, in particular in relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic approaches.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitofagia , Oxirredução , Ubiquitina-Proteína Ligases/genética , Adulto , Morte Celular , Cromanos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Imagem Óptica , Oxirredução/efeitos dos fármacos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
4.
Neuromolecular Med ; 19(2-3): 241-255, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28721669

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD-tremor at rest, bradykinesia and rigidity-once 50-70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.


Assuntos
Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Doença de Parkinson , Animais , Antiparkinsonianos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Células Cultivadas , Corpo Estriado/patologia , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurotoxinas/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Cultura Primária de Células , Ratos , Substância Negra/patologia
5.
Neurotox Res ; 32(3): 340-350, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28478530

RESUMO

Thioredoxin (Trx) and glyoxalase (Glo) systems have been suggested to be molecular targets of methylglyoxal (MGO). This highly reactive endogenous compound has been associated with the development of neurodegenerative pathologies and cell death. In the present study, the glutathione (GSH), Trx, and Glo systems were investigated to understand early events (0.5-3 h) that may determine cell fate. It is shown for the first time that MGO treatment induces an increase in glutathione reductase (GR) protein in hippocampal slices (1 h) and HT22 nerve cells (0.5 and 2.5 h). Thioredoxin interacting protein (Txnip), thioredoxin reductase (TrxR), Glo1, and Glo2 were markedly increased (2- to 4-fold) in hippocampal slices and 1.2- to 1.3-fold in HT22 cells. This increase in protein levels in hippocampal slices was followed by a corresponding increase in GR, TrxR, and Glo1 activities, but not in HT22 cells. In these cells, GR and TrxR activities were decreased by MGO. This result is in agreement with the idea that MGO can affect the Trx/TrxR reducing system, and now we show that GR and Txnip can also be affected by MGO. Impairment in the GR or TrxR reducing capacity can impair peroxide removal by glutathione peroxidase and peroxiredoxin, as both peroxidases depend on reduced GSH and Trx, respectively. In this regard, inhibition of GR and TrxR by 2-AAPA or auranofin, respectively, potentiated MGO toxicity in differentiated SH-SY5Y cells. Overall, MGO not only triggers a clear defense response in hippocampal slices and HT22 cells but also impairs the Trx/TrxR and GSH/GR reducing couples in HT22 cells. The increased MGO toxicity caused by inhibition of GR and TrxR with specific inhibitors, or their inhibition by MGO treatment, supports the notion that both reducing systems are relevant molecular targets of MGO.


Assuntos
Sobrevivência Celular/fisiologia , Glutationa Redutase/metabolismo , Aldeído Pirúvico/toxicidade , Tiorredoxinas/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Feminino , Glutationa/metabolismo , Hipocampo/enzimologia , Humanos , Camundongos , Neurônios/enzimologia , Neuroproteção/fisiologia , Aldeído Pirúvico/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Técnicas de Cultura de Tecidos
6.
Neurotox Res ; 22(2): 138-49, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22271527

RESUMO

It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 µM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 µM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)2, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.


Assuntos
Fármacos Neuroprotetores , Síndromes Neurotóxicas/patologia , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/toxicidade , Oxidopamina/toxicidade , Simpatolíticos/toxicidade , Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Corantes , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Humanos , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxidopamina/antagonistas & inibidores , Simpatolíticos/antagonistas & inibidores , Sais de Tetrazólio , Tiazóis
7.
Cancer ; 116(15): 3645-55, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20564088

RESUMO

BACKGROUND: Nonsmall cell lung cancer (NSCLC) is the major determinant of overall cancer mortality worldwide. Despite progress in molecular research, current treatments offer limited benefits. Because NSCLC generates early metastasis, and this behavior requires great cell motility, herein the authors assessed the potential value of CFL1 gene (main member of the invasion/metastasis pathway) as a prognostic and predictive NSCLC biomarker. METHODS: Metadata analysis of tumor tissue microarray was applied to examine expression of CFL1 in archival lung cancer samples from 111 patients, and its clinicopathologic significance was investigated. The robustness of the finding was validated using another independent data set. Finally, the authors assayed in vitro the role of CFL1 levels in tumor invasiveness and drug resistance using 6 human NSCLC cell lines with different basal degrees of CFL1 gene expression. RESULTS: CFL1 levels in biopsies discriminate between good and bad prognosis at early tumor stages (IA, IB, and IIA/B), where high CFL1 levels are correlated with lower overall survival rate (P<.0001). Biomarker performance was further analyzed by immunohistochemistry, hazard ratio (P<.001), and receiver-operating characteristic curve (area=0.787; P<.001). High CFL1 mRNA levels and protein content are positively correlated with cellular invasiveness (determined by Matrigel Invasion Chamber System) and resistance (2-fold increase in drug 50% growth inhibition dose) against a list of 22 alkylating agents. Hierarchical clustering analysis of the CFL1 gene network had the same robustness for stratified NSCLC patients. CONCLUSIONS: This study indicates that the CFL1 gene and its functional gene network can be used as prognostic biomarkers for NSCLC and could also guide chemotherapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Cofilina 1/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Cofilina 1/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
Brain Res ; 1337: 85-94, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20380819

RESUMO

The molecular mechanisms underlying the cellular lost found in the nigrostriatal pathway during the progression of Parkinson's disease (PD) are not completely understood. Human neuroblastoma cell line SH-SY5Y challenged with 6-hydroxydopamine (6-OHDA) has been widely used as an in vitro model for PD. Although this cell line differentiates to dopaminergic neuron-like cells in response to low serum and retinoic acid (RA) treatment, there are few studies investigating the differences between proliferative and RA-differentiated SH-SY5Y cells. Here we evaluate morphological and biochemical changes which occurs during the differentiation of SH-SY5Y cells, and their responsiveness to 6-OHDA toxicity. Exponentially growing SH-SY5Y cells were maintained with DMEM/F12 medium plus 10% of fetal bovine serum (FBS). Differentiation was triggered by the combination of 10 microM RA plus 1% of FBS during 4, 7 and 10 days in culture. We found that SH-SY5Y cells differentiated for 7 days show an increase immunocontent of several relevant neuronal markers with the concomitant decrease in non-differentiated cell marker. Moreover, cells became two-fold more sensitive to 6-OHDA toxicity during the differentiation process. Time course experiments showed loss of mitochondrial membrane potential triggered by 6-OHDA (mitochondrial dysfunction parameter), which firstly occurs in proliferative than neuron-like differentiated cells. This finding could be related to the increase in the immunocontent of the neuroprotective protein DJ-1 during differentiation. Our data suggest that SH-SY5Y cells differentiated by 7 days with the protocol described here represent a more suitable experimental model for studying the molecular and cellular mechanisms underlying the pathophysiology of PD.


Assuntos
Adrenérgicos/toxicidade , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Neuroblastoma/patologia , Oxidopamina/toxicidade , Doença de Parkinson/patologia , Animais , Biomarcadores/análise , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Ceratolíticos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/metabolismo , Proteínas Oncogênicas/análise , Proteínas Oncogênicas/biossíntese , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1 , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA