RESUMO
The upper airway is an important site of infection, but immune memory in the human upper airway is poorly understood, with implications for COVID-19 and many other human diseases1-4. Here we demonstrate that nasal and nasopharyngeal swabs can be used to obtain insights into these challenging problems, and define distinct immune cell populations, including antigen-specific memory B cells and T cells, in two adjacent anatomical sites in the upper airway. Upper airway immune cell populations seemed stable over time in healthy adults undergoing monthly swabs for more than 1 year, and prominent tissue resident memory T (TRM) cell and B (BRM) cell populations were defined. Unexpectedly, germinal centre cells were identified consistently in many nasopharyngeal swabs. In subjects with SARS-CoV-2 breakthrough infections, local virus-specific BRM cells, plasma cells and germinal centre B cells were identified, with evidence of local priming and an enrichment of IgA+ memory B cells in upper airway compartments compared with blood. Local plasma cell populations were identified with transcriptional profiles of longevity. Local virus-specific memory CD4+ TRM cells and CD8+ TRM cells were identified, with diverse additional virus-specific T cells. Age-dependent upper airway immunological shifts were observed. These findings provide new understanding of immune memory at a principal mucosal barrier tissue in humans.
Assuntos
Memória Imunológica , Células B de Memória , Células T de Memória , Mucosa Nasal , Nasofaringe , SARS-CoV-2 , Adulto , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , COVID-19/imunologia , COVID-19/virologia , Centro Germinativo/imunologia , Centro Germinativo/citologia , Imunoglobulina A/imunologia , Memória Imunológica/imunologia , Células B de Memória/imunologia , Células T de Memória/imunologia , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Nasofaringe/virologia , Nasofaringe/imunologia , Plasmócitos/imunologia , Plasmócitos/citologia , SARS-CoV-2/imunologiaRESUMO
Macrophages are susceptible to HIV infection and play an important role in viral dissemination through cell-cell contacts with T cells. However, our current understanding of macrophage-to-T cell HIV transmission is derived from studies that do not consider the robust migration and cell-cell interaction dynamics between these cells. Here, we performed live-cell imaging studies in 3-dimensional (3D) collagen that allowed CD4+ T cells to migrate and to locate and engage HIV-infected macrophages, modeling the dynamic aspects of the in situ environment in which these contacts frequently occur. We show that HIV+ macrophages form stable contacts with CD4+ T cells that are facilitated by both gp120-CD4 and LFA-1-ICAM-1 interactions and that prolonged contacts are a prerequisite for efficient viral spread. LFA-1-ICAM-1 adhesive contacts function to restrain highly motile T cells, since their blockade substantially destabilized macrophage-T cell contacts, resulting in abnormal tethering events that reduced cell-cell viral spread. HIV-infected macrophages displayed strikingly elongated podosomal extensions that were dependent on Nef expression but were dispensable for stable cell-cell contact formation. Finally, we observed persistent T cell infection in dynamic monocyte-derived macrophage (MDM)-T cell cocultures in the presence of single high antiretroviral drug concentrations but achieved complete inhibition with combination therapy. Together, our data implicate macrophages as drivers of T cell infection by altering physiological MDM-T cell contact dynamics to access and restrain large numbers of susceptible, motile T cells within lymphoid tissues.IMPORTANCE Once HIV enters the lymphoid organs, exponential viral replication in T cells ensues. Given the densely packed nature of these tissues, where infected and uninfected cells are in nearly constant contact with one another, efficient HIV spread is thought to occur through cell-cell contacts in vivo However, this has not been formally demonstrated. In this study, we performed live-cell imaging studies within a 3-dimensional space to recapitulate the dynamic aspects of the lymphoid microenvironment and asked whether HIV can alter the morphology, migration capacity, and cell-cell contact behaviors between macrophages and T cells. We show that HIV-infected macrophages can engage T cells in stable contacts through binding of virus- and host-derived adhesive molecules and that stable macrophage-T cell contacts were required for high viral spread. Thus, HIV alters physiological macrophage-T cell interactions in order to access and restrain large numbers of susceptible, motile T cells, thereby playing an important role in HIV progression.
Assuntos
Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Comunicação Celular/fisiologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Macrófagos/virologia , Cultura Primária de Células , Replicação Viral/fisiologiaRESUMO
BACKGROUND: It is hypothesized that in individuals without clinical cardiovascular disease (CVD), but at increased CVD risk, a 50% to 60% reduction in CVD risk could be achieved using fixed dose combination (FDC) therapy (usually comprised of multiple blood-pressure agents and a statin [with or without aspirin]) in a single "polypill". However, the impact of a polypill in preventing clinical CV events has not been evaluated in a large randomized controlled trial. METHODS: TIPS-3 is a 2x2x2 factorial randomized controlled trial that will examine the effect of a FDC polypill on major CV outcomes in a primary prevention population. This study aims to determine whether the Polycap (comprised of atenolol, ramipril, hydrochlorothiazide, and a statin) reduces CV events in persons without a history of CVD, but who are at least at intermediate CVD risk. Additional interventions in the factorial design of the study will compare the effect of (1) aspirin versus placebo on CV events (and cancer), (2) vitamin D versus placebo on the risk of fractures, and (3) the combined effect of aspirin and the Polycap on CV events. RESULTS: The study has randomized 5713 participants across 9 countries. Mean age of the study population is 63.9 years, and 53% are female. Mean INTERHEART risk score is 16.8, which is consistent with a study population at intermediate CVD risk. CONCLUSION: Results of the TIP-3 study will be key to determining the appropriateness of FDC therapy as a strategy in the global prevention of CVD.
Assuntos
Atenolol/administração & dosagem , Doenças Cardiovasculares/prevenção & controle , Hidroclorotiazida/administração & dosagem , Prevenção Primária/métodos , Ramipril/administração & dosagem , Sinvastatina/administração & dosagem , Antagonistas de Receptores Adrenérgicos beta 1/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Anti-Hipertensivos/uso terapêutico , Doenças Cardiovasculares/epidemiologia , Diuréticos/administração & dosagem , Método Duplo-Cego , Combinação de Medicamentos , Feminino , Saúde Global , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Incidência , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
The primary goal of this study was to develop a method to study the N-glycosylation of IgG from swine in order to detect epitopes containing N-glycolylneuraminic acid (Neu5Gc) and/or terminal galactose residues linked in α1-3 susceptible to cause xenograft-related problems. Samples of immunoglobulin were isolated from porcine serum using protein-A affinity chromatography. The eluate was then separated on electrophoretic gel, and bands corresponding to the N-glycosylated heavy chains were cut off the gel and subjected to tryptic digestion. Peptides and glycopeptides were separated by reversed phase liquid chromatography and fractions were collected for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) analysis. Overall no α1-3 galactose was detected, as demonstrated by complete susceptibility of terminal galactose residues to ß-galactosidase digestion. Neu5Gc was detected on singly sialylated structures. Two major N-glycopeptides were found, EEQFNSTYR and EAQFNSTYR as determined by tandem MS (MS/MS), as previously reported by Butler et al. (Immunogenetics, 61, 2009, 209-230), who found 11 subclasses for porcine IgG. Out of the 11, ten include the sequence corresponding to EEQFNSTYR, and only one codes for EAQFNSTYR. In this study, glycosylation patterns associated with both chains were slightly different, in that EEQFNSTYR had a higher content of galactose. The last step of this study consisted of peptide-mapping the 11 reported porcine IgG sequences. Although there was considerable overlap, at least one unique tryptic peptide was found per IgG sequence. The workflow presented in this manuscript constitutes the first study to use MALDI-TOF-MS in the investigation of porcine IgG structural features.
Assuntos
Imunoglobulina G/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Glicosilação , Imunoglobulina G/metabolismo , Dados de Sequência Molecular , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , SuínosRESUMO
RATIONALE: A cleavable linker is designed and synthesized for the selective capture of azide-containing compounds. This article presents a proof of concept methodology involving the use of peptide-functionalized aminopropyl silica, on which the peptide is constructed by solid-phase peptide synthesis. METHODS: The peptide linker has L-propargylglycine (Pra) at one terminal end to allow the conjugation of azide-containing molecules by copper assisted azide alkyne cycloaddition, also known as click reaction. L-Arginine (Arg) is placed just before Pra to permit the release of the captured product by tryptic cleavage. Three glycine (Gly) residues, as part of the linker, are appended to the silica bead to present a spacer section that allows efficient tryptic cleavage devoid of steric hindrance imposed by the bulky bead. The bead composition is Si-O-propyl-NH-Gly-Gly-Gly-Arg-Pra. RESULTS: This solid-phase material can be used to capture and release azide-functionalized compounds. The beads are first tested on three azido compounds, 2-azido-2-deoxyglucose (ADG), BOC-p-azido-Phe-OH (BAzPhe), where BOC = tert-butoxycarbonyl, and tetraacetylated-N-azidomannosamine (Ac4 ManNAz). Copper-mediated click reaction conditions are used and released products are characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS (MS/MS). CONCLUSIONS: This method allows easy identification of captured compounds based on mass and fragmentation analysis. Moreover, it is useful for the analysis of small azide-containing compounds by MALDI-TOF-MS which may not be possible otherwise due to matrix interferences. The insertion of isotopically labeled Arg residues provides the possibility of multiplex analysis, from which the beads have been called MAGIC (for Multiplexed Azido-Group Isotopic Capture). Copyright © 2016 John Wiley & Sons, Ltd.
RESUMO
Conidia production and quality from mycoinsecticides in solid-state cultures (SSC) are frequently inferred from superficial culture (SC) results. Both parameters were evaluated for two Isaria fumosorosea strains (ARSEF 3302 and CNRCB1), in SC and SSC, using culture media with the same chemical composition. For both strains, conidia production was higher in SC than SSC in terms of conidia per gram of dry substrate. Germination in both strains did not show significant differences between SC and SSC (>90 %). Similarly, conidia viability in ARSEF 3302 strain did not show differences at early stages between SC and SSC, but was higher in SC compared to SSC in the late stage of culture; in contrast, conidia from CNRCB1 strain did not differ between both culture systems. Some infectivity parameters improved in conidia from SSC, compared to SC at the early stages, but these differences disappeared at the final stage, independently of the strain. Both strains showed decreased conidia production when 26 % O2 pulses were applied; nevertheless, conidiation in SSC was two orders of magnitude more sensitive to oxidant pulses. In SC with 26 % O2 pulses, conidia viability for both strains at early stages, was higher than in normal atmospheric conditions. Infectivity towards Galleria mellonella larvae was similar between conidia from normal atmosphere and oxidant conditions; notably, for the strain ARSEF 3302 infectivity decreased at the final stage. This study shows the intrinsic differences between SC and SSC, which should be considered when using SC as a model to design production processes in SSC.
Assuntos
Hypocreales/crescimento & desenvolvimento , Oxidantes/farmacologia , Animais , Pressão Atmosférica , Meios de Cultura , Hypocreales/efeitos dos fármacos , Hypocreales/patogenicidade , Hypocreales/fisiologia , Larva/microbiologia , Lepidópteros/microbiologia , Viabilidade Microbiana , Micologia/métodos , Oxigênio/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologiaRESUMO
Monilethrix is an autosomal dominant hair disorder caused by mutations in the hard keratins KRT81, KRT83 and KRT86. The affected hairs are fragile and break easily, leading to scarring alopecia. Follicular hyperkeratosis in the neck and on extensor sides of extremities is a frequently associated finding. The disorder is rare, but probably underreported because its manifestations may be mild. Mutations in KRT81 and KRT86 are the most common. Here, we report new cases from Venezuela, the Netherlands, Belgium and France. The Venezuelan kindred is special for having patients with digenic novel nucleotide changes, a KRT86 mutation associated with monilethrix and a KRT81 variant of unknown clinical significance. In the French and Dutch patients, we found novel KRT86 and KRT83 mutations. Our findings expand the mutational spectrum associated with monilethrix.
Assuntos
Queratinas Específicas do Cabelo/genética , Queratinas Tipo II/genética , Monilétrix/genética , Fenótipo , Feminino , Humanos , Masculino , MutaçãoRESUMO
Metabolic engineering of glycans present on antibodies and other glycoproteins is becoming an interesting research area for improving our understanding of the glycome. With knowledge of the sialic acid biosynthetic pathways, the experiments described in this report are based on a published procedure involving the addition of a synthesized azido-mannosamine sugar into cell culture media and evaluation of downstream expression as azido-sialic acid. This unique bioorthogonal sugar has the potential for a variety of "click chemistry" reactions through the azide linkage, which allow for it to be isolated and quantified given the choice of label. In this report, mass spectrometry was used to investigate and optimize the cellular absorption of peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to form N-azidoacetylneuraminic acid (SiaNAz) in a Chinese hamster ovary (CHO) cell line transiently expressing a double mutant trastuzumab (TZMm2), human galactosyltransferase 1 (GT), and human α-2,6-sialyltransferase (ST6). This in vivo approach is compared to in vitro enzymatic addition SiaNAz onto TZMm2 using soluble ß-galactosamide α-2,6-sialyltransferase 1 and CMP-SiaNAz as donor. The in vivo results suggest that for this mAb, concentrations above 100 µM of Ac4ManNAz are necessary to allow for observation of terminal SiaNAz on tryptic peptides of TZMm2 by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. This is further confirmed by a parallel study on the production of EG2-hFc monoclonal antibody (Zhang J et al. Prot Expr Purific 65(1); 77-82, 2009) in the presence of increasing concentrations of Ac4ManNAz.
Assuntos
Polissacarídeos/metabolismo , Ácidos Siálicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Engenharia Metabólica , Estrutura Molecular , N-Acetil-Lactosamina Sintase/metabolismo , Polissacarídeos/química , Ácidos Siálicos/metabolismoRESUMO
Molecular-based characterizations of Andean peoples are traditionally conducted in the service of elucidating continent-level evolutionary processes in South America. Consequently, genetic variation among "western" Andean populations is often represented in relation to variation among "eastern" Amazon and Orinoco River Basin populations. This west-east contrast in patterns of population genetic variation is typically attributed to large-scale phenomena, such as dual founder colonization events or differing long-term microevolutionary histories. However, alternative explanations that consider the nature and causes of population genetic diversity within the Andean region remain underexplored. Here we examine population genetic diversity in the Peruvian Central Andes using data from the mtDNA first hypervariable region and Y-chromosome short tandem repeats among 17 newly sampled populations and 15 published samples. Using this geographically comprehensive data set, we first reassessed the currently accepted pattern of western versus eastern population genetic structure, which our results ultimately reject: mtDNA population diversities were lower, rather than higher, within Andean versus eastern populations, and only highland Y-chromosomes exhibited significantly higher within-population diversities compared with eastern groups. Multiple populations, including several highland samples, exhibited low genetic diversities for both genetic systems. Second, we explored whether the implementation of Inca state and Spanish colonial policies starting at about ad 1400 could have substantially restructured population genetic variation and consequently constitute a primary explanation for the extant pattern of population diversity in the Peruvian Central Andes. Our results suggest that Peruvian Central Andean population structure cannot be parsimoniously explained as the sole outcome of combined Inca and Spanish policies on the region's population demography: highland populations differed from coastal and lowland populations in mtDNA genetic structure only; highland groups also showed strong evidence of female-biased gene flow and/or effective sizes relative to other Peruvian ecozones. Taken together, these findings indicate that population genetic structure in the Peruvian Central Andes is considerably more complex than previously reported and that characterizations of and explanations for genetic variation may be best pursued within more localized regions and defined time periods.
Assuntos
DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Indígenas Sul-Americanos/genética , Cromossomos Humanos Y , Feminino , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Peru , Reação em Cadeia da Polimerase , Dinâmica Populacional , América do SulRESUMO
Introduction Chronic Obstructive Pulmonary Disease (COPD) is a systemic disease characterized by skeletal muscle dysfunction, leading to increased morbidity and mortality and deteriorating quality of life. Pulmonary rehabilitation therapy improves symptoms and long-term adherence. This study aimed to evaluate how COPD patients respond to pulmonary rehabilitation therapy and its correlation with handgrip strength measurements. Materials and methods A prospective cohort study was conducted in patients over 45 years old with a spirometric diagnosis of COPD from a specialized reference center in Bucaramanga. Handgrip strength was measured before and after completing the pulmonary rehabilitation program. Patients with neurological or cognitive impairments, decompensated cardiovascular disease, nutritional diseases, or those in a telerehabilitation program were excluded. Results Seventy-one patients were included in the study, with 66.2% completing follow-up after the program. The average age was 73.38 years (SD ±7.77), 53.52% were women, and 60.56% had a history of smoking. After the follow-up, the average handgrip strength delta was 1.64 kg (SD ±3.48) p<0.001, 74.47% of them representing a positive result after pulmonary rehabilitation program. A higher Charlson index correlated with a positive delta, while a negative delta correlated with a lower Charlson index (p=0.01). A positive handgrip strength delta was associated with higher baseline quality of life scores. Conclusions Periodic handgrip strength measurements predict frailty and muscle dysfunction in COPD patients. Pulmonary rehabilitation therapy is a simple and cost-effective intervention that correlates with the improvement of indirect prognosis and survival indicators.
RESUMO
The autoimmune/inflammatory syndrome induced by adjuvants (ASIA) encompasses various autoimmune conditions triggered by exposure to substances with adjuvant activity. Despite its potential relevance to public health, global scientific production on ASIA syndrome is significantly limited. This knowledge gap underscores the need for a comprehensive bibliometric assessment to understand global research in this field. Therefore, this article aims to conduct a bibliometric analysis to identify and evaluate research trends related to ASIA syndrome worldwide. A Scopus search identified scientific documents published between 2010 and 2022. A total of 2,133 articles meeting inclusion criteria were selected and analyzed for scientific production, authors, and institutions. Two-hundred fifty six documents were analyzed, mostly journal articles with multiple authors. The year with the highest publications was 2023, marking a notable increase since 2021. Italy and Israel had the most documents and citations, correlating with authors Yehuda Shoenfeld (Israel) and Carlo Perricone (Italy). Standout journals are "The Journal of Immunologic Research" and "Lupus." Relevant affiliations include Tel-Aviv University and the National Autonomous University of Mexico. This article identifies and analyzes scientific trends associated with ASIA syndrome. Despite increased publications, this field remains controversial and lacks full acceptance within the medical and scientific community, as evidenced by limited scientific production compared to other pathologies. These findings may motivate researchers to generate impactful publications, contributing to the global knowledge expansion on this syndrome.
RESUMO
INTRODUCTION: The emergence of COVID-19 represents the most significant health crisis in recent history. Incidence and mortality rates depend on several factors. Many studies have focused on investigating which characteristics could be strongly related to higher mortality and lethality. OBJECTIVE: This study aims to analyze the variables associated with in-hospital mortality among patients admitted in a reference northeastern region of a Colombian institution. METHODS: An ambidirectional cohort, single-center study was carried out in a reference hospital in northeastern Colombia. All patients admitted to the Fundación Oftalmológica de Santander (FOSCAL) between March 2020 and September 2021, with COVID-19 real-time polymerase chain reaction (PCR) positive test, were included. RESULTS: A total of 3,028 patients were included, of whom 2,034 (67.8%) survived and 994 (32.8%) died during their hospital stay; 48.8% (1,479) of the patients were female. The most common comorbidities were hypertension (1,236 patients, 40.8%), obesity (body mass index (BMI) ≥ 30; 656 patients, 21.6%), and diabetes (618 patients, 20.4%). The average age of the surviving patients was 52.2 years, while for the deceased patients, it was 70.3 years. The variables that showed significant association with in-hospital mortality were as follows: male sex ≥ 45 years, dyspnea, oxygen saturation (SatO2) < 85%, hypertension, chronic kidney disease (CKD), and a Charlson Comorbidity Index (CCI) score of >1. CONCLUSIONS: Male sex, age ≥ 45 years, dyspnea, SatO2 < 85%, hypertension, CKD, and a CCI score of >1 were associated with a higher risk of in-hospital mortality in COVID-19-infected patients.
RESUMO
A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems. Recently, we established a mouse papillomavirus (MmuPV1) model that is relevant to HPV genital pathogenesis. In the current study, we validated the use of Papanicolaou (Pap) smears, a valuable early diagnostic tool for detecting HPV cervical cancer, to monitor disease progression in the MmuPV1 mouse model. Biweekly cervicovaginal swabs were collected from the MmuPV1-infected mice for viral DNA quantitation and cytology assessment. The Pap smear slides were evaluated for signs of epithelial cell abnormalities using the 2014 Bethesda system criteria. Tissues from the infected mice were harvested at various times post-viral infection for additional histological and virological assays. Over time, increased viral replication was consistent with higher levels of viral DNA, and it coincided with an uptick in epithelial cell abnormalities with higher severity scores noted as early as 10 weeks after viral infection. The cytological results also correlated with the histological evaluation of tissues harvested simultaneously. Both immunocompromised and immunocompetent mice with squamous cell carcinoma (SCC) cytology also developed vaginal SCCs. Notably, samples from the MmuPV1-infected mice exhibited similar cellular abnormalities compared to the corresponding human samples at similar disease stages. Hence, Pap smear screening proves to be an effective tool for the longitudinal monitoring of disease progression in the MmuPV1 mouse model. IMPORTANCE: Papanicolaou (Pap) smear has saved millions of women's lives as a valuable early screening tool for detecting human papillomavirus (HPV) cervical precancers and cancer. However, more than 200,000 women in the United States alone remain at risk for cervical cancer due to pre-existing HPV infection-induced precancers, as there are currently no effective treatments for HPV-associated precancers and cancers other than invasive procedures including a loop electrosurgical excision procedure (LEEP) to remove abnormal tissues. In the current study, we validated the use of Pap smears to monitor disease progression in our recently established mouse papillomavirus model. To the best of our knowledge, this is the first study that provides compelling evidence of applying Pap smears from cervicovaginal swabs to monitor disease progression in mice. This HPV-relevant cytology assay will enable us to develop and test novel antiviral and anti-tumor therapies using this model to eliminate HPV-associated diseases and cancers.
Assuntos
Modelos Animais de Doenças , Teste de Papanicolaou , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Animais , Feminino , Camundongos , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/diagnóstico , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/patologia , Detecção Precoce de Câncer/métodos , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , DNA Viral/genética , Esfregaço Vaginal , Humanos , Estudos LongitudinaisRESUMO
Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial-temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial-temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial-temporal regulation of this process.
Assuntos
Apoptose , Microscopia , Humanos , Animais , Camundongos , Sobrevivência Celular , Microscopia Intravital , Reconhecimento PsicológicoRESUMO
The induction of durable protective immune responses is the main goal of prophylactic vaccines, and adjuvants play an important role as drivers of such responses. Despite advances in vaccine strategies, a safe and effective HIV vaccine remains a significant challenge. The use of an appropriate adjuvant is crucial to the success of HIV vaccines. Here we assessed the saponin/MPLA nanoparticle (SMNP) adjuvant with an HIV envelope (Env) trimer, evaluating the safety and impact of multiple variables including adjuvant dose (16-fold dose range), immunization route, and adjuvant composition on the establishment of Env-specific memory T and B cell responses (T Mem and B Mem ) and long-lived plasma cells in non-human primates. Robust B Mem were detected in all groups, but a 6-fold increase was observed in the highest SMNP dose group vs. the lowest dose group. Similarly, stronger vaccine responses were induced in the highest SMNP dose for CD40L + OX40 + CD4 T Mem (11-fold), IFNγ + CD4 T Mem (15-fold), IL21 + CD4 T Mem (9-fold), circulating T FH (3.6-fold), bone marrow plasma cells (7-fold), and binding IgG (1.3-fold). Substantial tier-2 neutralizing antibodies were only observed in the higher SMNP dose groups. These investigations highlight the dose-dependent potency of SMNP in non-human primates, which are relevant for human use and next-generation vaccines.
RESUMO
Cutaneous Leishmania major infection elicits a rapid T cell response that is insufficient to clear residually infected cells, possibly due to the accumulation of regulatory T cells in healed skin. Here, we used Leishmania-specific TCR transgenic mice as a sensitive tool to characterize parasite-specific effector and immunosuppressive responses in vivo using two-photon microscopy. We show that Leishmania-specific Tregs displayed higher suppressive activity compared to polyclonal Tregs, that was mediated through IL-10 and not through disrupting cell-cell contacts or antigen presentation. In vivo expansion of endogenous Leishmania-specific Tregs resulted in disease reactivation that was also IL-10 dependent. Interestingly, lack of Treg expansion that recognized the immunodominant Leishmania peptide PEPCK was sufficient to restore robust effector Th1 responses and resulted in parasite control exclusively in male hosts. Our data suggest a stochastic model of Leishmania major persistence in skin, where cellular factors that control parasite numbers are counterbalanced by Leishmania-specific Tregs that facilitate parasite persistence.
Assuntos
Leishmania major , Leishmaniose Cutânea , Camundongos , Animais , Masculino , Linfócitos T Reguladores , Interleucina-10/genética , Leishmania major/genética , Camundongos TransgênicosRESUMO
Objective This study aims to describe demographic and clinical characteristics and the factors associated with the risk of COVID-19 general hospitalization and intensive care unit (ICU) care of patients who consulted in a third-level hospital in Santander, Colombia. Methods We used baseline data from an ambidirectional cohort study. We included all patients with positive real-time polymerase chain reaction (PCR) tests for COVID-19 who came to the emergency room (ER) for respiratory symptoms related to COVID-19. Information regarding patients' baseline characteristics and symptoms was collected through telephone interviews and review of medical records. Vital signs were extracted from medical records as well. Results We enrolled 3,030 patients, predominantly men, with a median age of 60 (interquartile range (IQR): 44-73). Symptoms of the acute phase varied between men and women. Men presented with more respiratory symptoms, and women had general symptoms. Hypertension, obesity, and diabetes were common risk factors for hospital admission. Antibiotic consumption may also play a role in hospital admission. Conclusions Male sex, older age, hypertension, obesity, prior thrombotic events, and self-medicated antibiotics were associated with general hospitalization. Hypertension, obesity, diabetes, and cancer were associated with ICU admission. The Charlson comorbidity index (CCI) is a powerful tool for evaluate the impact of pre-existing health conditions on COVID-19 hospital admission. We highlight the importance of these findings as possible predictors in our region.
RESUMO
Neutrophil recruitment and activation within the female genital tract are often associated with tissue inflammation, loss of vaginal epithelial barrier integrity, and increased risk for sexually transmitted infections, such as HIV-1. However, the direct role of neutrophils on vaginal epithelial barrier function during genital inflammation in vivo remains unclear. Using complementary proteome and immunological analyses, we show high neutrophil influx into the lower female genital tract in response to physiological surges in progesterone, stimulating distinct stromal, immunological, and metabolic signaling pathways. However, despite the release of extracellular matrix-modifying proteases and inflammatory mediators, neutrophils contributed little to physiological mucosal remodeling events such as epithelial shedding or re-epithelialization during transition from diestrus to estrus phase. In contrast, the presence of bacterial vaginosis-associated bacteria resulted in a rapid and sustained neutrophil recruitment, resulting in vaginal epithelial barrier leakage and decreased cell-cell junction protein expression in vivo. Thus, neutrophils are important mucosal sentinels that rapidly respond to various biological cues within the female genital tract, dictating the magnitude and duration of the ensuing inflammatory response at steady state and during disease processes.
Assuntos
Neutrófilos , Infecções Sexualmente Transmissíveis , Feminino , Humanos , Inflamação , Genitália Feminina , Vagina , BactériasRESUMO
T cells are involved in protective immunity against numerous viral infections. Limited data have been available regarding roles of human T cell responses controlling SARS-CoV-2 viral clearance in primary COVID-19. Here, we examined longitudinal SARS-CoV-2 upper respiratory tract viral RNA levels and early adaptive immune responses from 95 unvaccinated individuals with acute COVID-19. Acute SARS-CoV-2-specific CD4 and CD8 T cell responses were evaluated in addition to antibody responses. Most individuals with acute COVID-19 developed rapid SARS-CoV-2-specific T cell responses during infection, and both early CD4 T cell and CD8 T cell responses correlated with reduced upper respiratory tract SARS-CoV-2 viral RNA, independent of neutralizing antibody titers. Overall, our findings indicate a distinct protective role for SARS-CoV-2-specific T cells during acute COVID-19.
RESUMO
BACKGROUND: Metabolic syndrome (MetS) is a disorder associated with an increased risk for the development of diabetes mellitus and its complications. Lower isometric handgrip strength (HGS) is associated with an increased risk of cardiometabolic diseases. However, the association between HGS and arterial stiffness parameters, which are considered the predictors of morbidity and mortality in individuals with MetS, is not well defined. OBJECTIVE: To determine the association between HGS and HGS asymmetry on components of vascular function in adults with MetS. METHODS: We measured handgrip strength normalized to bodyweight (HGS/kg), HGS asymmetry, body composition, blood glucose, lipid profile, blood pressure, pulse wave velocity (PWV), reflection coefficient (RC), augmentation index @75 bpm (AIx@75) and peripheral vascular resistance (PVR) in 55 adults with a diagnosis of MetS between 25 and 54 years old. RESULTS: Mean age was 43.1 ± 7.0 years, 56.3% were females. HGS/kg was negatively correlated with AIx@75 (r = -0.440), p < 0.05, but these associations were not significant after adjusting for age and sex. However, when interaction effects between sex, HGS/kg and age were examined, we observed an inverse relationship between HGS/kg and AIx@75 in the older adults in the sample, whereas in the younger adults, a weak direct association was found. We also found a significant association between HGS asymmetry and PVR (beta = 30, 95% CI = 7.02; 54.2; p <0.012). CONCLUSIONS: Our findings suggest that in people with MetS, maintaining muscle strength may have an increasingly important role in older age in the attenuation of age-related increases in AIx@75-a marker of vascular stiffness-and that a higher HGS asymmetry could be associated with a greater vascular resistance.