Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Genet ; 15(7): e1008292, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339933

RESUMO

Red light promotes germination after activating phytochrome phyB, which destabilizes the germination repressor PIF1. Early upon seed imbibition, canopy light, unfavorable for photosynthesis, represses germination by stabilizing PIF1 after inactivating phyB. Paradoxically, later upon imbibition, canopy light stimulates germination after activating phytochrome phyA. phyA-mediated germination is poorly understood and, intriguingly, is inefficient, compared to phyB-mediated germination, raising the question of its physiological significance. A genetic screen identified polyamine uptake transporter 2 (put2) mutants that overaccumulate polyamines, a class of antioxidant polycations implicated in numerous cellular functions, which we found promote phyA-mediated germination. In WT seeds, our data suggest that canopy light represses polyamines accumulation through PIF1 while red light promotes polyamines accumulation. We show that canopy light also downregulates PIF1 levels, through phyA; however, PIF1 reaccumulates rapidly, which limits phyA-mediated germination. High polyamines levels in decaying seeds bypass PIF1 repression of germination and stimulate phyA-mediated germination, suggesting an adaptive mechanism promoting survival when viability is compromised.


Assuntos
1-Pirrolina-5-Carboxilato Desidrogenase/genética , Sistemas de Transporte de Aminoácidos/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fitocromo A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , 1-Pirrolina-5-Carboxilato Desidrogenase/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação para Baixo , Germinação , Luz , Mutação , Poliaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Plant J ; 104(3): 567-580, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985026

RESUMO

The seed coat is specialized dead tissue protecting the plant embryo from mechanical and oxidative damage. Tannins, a type of flavonoids, are antioxidants known to accumulate in the Arabidopsis seed coat and transparent testa mutant seeds, deficient in flavonoid synthesis, exhibit low viability. However, their precise contribution to seed coat architecture and biophysics remains evasive. A seed coat cuticle, covering the endosperm outer surface and arising from the seed coat inner integument 1 cell layer was, intriguingly, previously shown to be more permeable in transparent testa mutants deficient not in cuticular component synthesis, but rather in flavonoid synthesis. Investigating the role of flavonoids in cuticle permeability led us to identify periclinal inner integument 1 tannic cell walls being attached, together with the cuticle, to the endosperm surface upon seed coat rupture. Hence, inner integument 1 tannic cell walls and the cuticle form two fused layers present at the surface of the exposed endosperm upon seed coat rupture, regulating its permeability. Their potential physiological role during seed germination is discussed.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Endosperma/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia
3.
Plant Physiol ; 182(4): 2166-2181, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060052

RESUMO

Photosynthesis is the fundamental process fueling plant vegetative growth and development. The progeny of plants relies on maternal photosynthesis, via food reserves in the seed, to supply the necessary energy for seed germination and early seedling establishment. Intriguingly, before seed maturation, Arabidopsis (Arabidopsis thaliana) embryos are also photosynthetically active, the biological significance of which remains poorly understood. Investigating this system is genetically challenging because mutations perturbing photosynthesis are expected to affect both embryonic and vegetative tissues. Here, we isolated a temperature-sensitive mutation affecting CPN60α2, which encodes a subunit of the chloroplast chaperonin complex CPN60. When exposed to cold temperatures, cpn60α2 mutants accumulate less chlorophyll in newly produced tissues, thus allowing the specific disturbance of embryonic photosynthesis. Analyses of cpn60α2 mutants were combined with independent genetic and pharmacological approaches to show that embryonic photosynthetic activity is necessary for normal skoto- and photomorphogenesis in juvenile seedlings as well as long-term adult plant development. Our results reveal the importance of embryonic photosynthetic activity for normal adult plant growth, development, and health.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/genética , Germinação/fisiologia , Mutação , Fotossíntese/genética , Fotossíntese/fisiologia , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Sementes/genética
4.
Plant J ; 98(2): 277-290, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570804

RESUMO

Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. This increased dormancy is associated with increased ABA levels, and can be separated genetically from any role in endosperm maturation because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes, including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endosperma/metabolismo , Dormência de Plantas/fisiologia , Plântula/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Fenótipo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plântula/genética , Sementes/genética , Transdução de Sinais , Fatores de Transcrição/genética
5.
Genes Dev ; 26(17): 1984-96, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22948663

RESUMO

Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Germinação , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Sementes/embriologia , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas , Sementes/metabolismo , Transdução de Sinais
7.
Plant Physiol ; 177(3): 1218-1233, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29848749

RESUMO

Mature dry seeds are highly resilient plant structures where the encapsulated embryo is kept protected and dormant to facilitate its ultimate dispersion. Seed viability is heavily dependent on the seed coat's capacity to shield living tissues from mechanical and oxidative stress. In Arabidopsis (Arabidopsis thaliana), the seed coat, also called the testa, arises after the differentiation of maternal ovular integuments during seed development. We recently described a thick cuticle tightly embedded in the mature seed's endosperm cell wall. We show here that it is produced by the maternal inner integument 1 layer and, remarkably, transferred to the developing endosperm. Arabidopsis transparent testa (tt) mutations cause maternally derived seed coat pigmentation defects. TT gene products encode proteins involved in flavonoid metabolism and regulators of seed coat development. tt mutants have abnormally high seed coat permeability, resulting in lower seed viability and dormancy. However, the biochemical basis of this high permeability is not fully understood. We show that the cuticles of developing tt mutant integuments have profound structural defects, which are associated with enhanced cuticle permeability. Genetic analysis indicates that a functional proanthocyanidin synthesis pathway is required to limit cuticle permeability, and our results suggest that proanthocyanidins could be intrinsic components of the cuticle. Together, these results show that the formation of a maternal cuticle is an intrinsic part of the normal integumental differentiation program leading to testa formation and is essential for the seed's physiological properties.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endosperma/fisiologia , Sementes/citologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Endosperma/efeitos dos fármacos , Endosperma/ultraestrutura , Microscopia Eletrônica de Transmissão , Mutação , Permeabilidade , Plantas Geneticamente Modificadas , Sementes/genética , Cloreto de Tolônio/farmacologia
8.
PLoS Genet ; 11(12): e1005708, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26681322

RESUMO

Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.


Assuntos
Germinação/genética , Giberelinas/genética , Lipídeos de Membrana/genética , Dormência de Plantas/genética , Arabidopsis , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
9.
J Exp Bot ; 68(4): 857-869, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729475

RESUMO

Primary seed dormancy is an important adaptive plant trait whereby seed germination is blocked under conditions that would otherwise be favorable for germination. This trait is found in newly produced mature seeds of many species, but not all. Once produced, dry seeds undergo an aging time period, called dry after-ripening, during which they lose primary dormancy and gradually acquire the capacity to germinate when exposed to favorable germination conditions. Primary seed dormancy has been extensively studied not only for its scientific interest but also for its ecological, phenological, and agricultural importance. Nevertheless, the mechanisms underlying primary seed dormancy and its regulation during after-ripening remain poorly understood. Here we review the principal developmental stages where primary dormancy is established and regulated prior to and during seed after-ripening, where it is progressively lost. We attempt to identify and summarize what is known about the molecular and genetic mechanisms intervening over time in each of these stages.


Assuntos
Dormência de Plantas/fisiologia , Ácido Abscísico/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Endosperma/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
10.
Saf Health Work ; 15(1): 80-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38496278

RESUMO

Background: The Work Ability Index (WAI) is an instrument that measures work ability. The wide dispersion of the WAI internationally has led to its adaptation for use in different countries. This study aimed to evaluate the psychometric properties of the Spanish version of the WAI. Methods: A methodological design was used over an opportunistic sample of 233 workers in the aeronautical industry in Spain. Reliability was evaluated through internal consistency. Factorial validity, known groups, and convergent validity were tested. Results: The Cronbach's alpha and item-total correlation indicated an adequate internal consistency. The confirmatory factor analysis, performed to evaluate the factorial validity, found adequate fit indices for a two-factor solution with a high correlation between the factors. Factor 1, "Subjectively estimated work ability and resources", was composed of 3 subscales and factor 2, "Ill-health-related", of 2 subscales. Subscales 4 and 6 had loading in both factors. Workers under 45 years of age obtained higher significant scores than older ones. Convergent validity was also evidenced since WAI was highly correlated with self-assessment of health status. Conclusions: The Spanish version of the WAI has shown evidence of reliability and validity in this study, supporting its use in individual and collective health surveillance by occupational health professionals. The factorial solution that was found has previously been reported in another international context. However, further research is needed to resolve the discrepancies detected in the role of some subscales between other national and international studies.

11.
EMBO J ; 28(15): 2259-71, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19556968

RESUMO

Under the canopy, far-red (FR) light represses seed germination by inactivating phytochrome photoreceptors. This elicits a decrease in gibberellins (GA) levels and an increase in abscisic acid (ABA) levels. GA promotes germination by enhancing the proteasome-mediated destruction of DELLA repressors. ABA prevents germination by stimulating the expression of ABI repressors. How phytochromes elicit changes in hormone levels or how GA- and ABA-dependent signals are coordinated to repress germination remains poorly understood. We show that repression of germination by FR light involves stabilized DELLA factors GAI, RGA and RGL2 that stimulate endogenous ABA synthesis. In turn, ABA blocks germination through the transcription factor ABI3. The role of PIL5, a basic helix-loop-helix transcription factor stimulating GAI and RGA expression, is significant, provided GA synthesis is high enough; otherwise, high GAI and RGA protein levels persist to block germination. Under white light, GAI and RGA driven by the RGL2 promoter can substitute for RGL2 to promote ABA synthesis and repress germination, consistent with the recent findings with RGL2. The three DELLA factors inhibit testa rupture whereas ABI3 blocks endosperm rupture.


Assuntos
Ácido Abscísico/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica , Germinação/efeitos da radiação , Luz , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(44): 19108-13, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956298

RESUMO

Seed dormancy is an ecologically important adaptive trait in plants whereby germination is repressed even under favorable germination conditions such as imbibition with water. In Arabidopsis and most plant species, dormancy absolutely requires an unidentified seed coat germination-repressive activity and constitutively higher abscisic acid (ABA) levels upon seed imbibition. The mechanisms underlying these processes and their possible relationship are incompletely understood. We developed a "seed coat bedding" assay monitoring the growth of dissected embryos cultured on a layer of seed coats, allowing combinatorial experiments using dormant, nondormant, and various genetically modified seed coat and embryonic materials. This assay, combined with direct ABA measurements, revealed that, upon imbibition, dormant coats, unlike nondormant coats, actively produce and release ABA to repress embryo germination, whatever the embryo origin, i.e., from dormant, nondormant, or never dormant aba seeds, unable to synthesize ABA. The persistent high ABA levels in imbibed dormant seeds requires the permanent expression of the DELLA gene RGL2, where it remains insensitive to gibberellins (GA) unlike in nondormant seeds. These findings present the seed coat as an organ actively controlling germination upon seed imbibition and provide a framework to investigate how environmental factors break seed dormancy.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endosperma/metabolismo , Dormência de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/genética , Giberelinas/metabolismo , Fatores de Transcrição/genética
13.
Nat Commun ; 14(1): 1202, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882415

RESUMO

Seed thermoinhibition, the repression of germination under high temperatures, prevents seedling establishment under potentially fatal conditions. Thermoinhibition is relevant for phenology and agriculture, particularly in a warming globe. The temperature sensing mechanisms and signaling pathways sustaining thermoinhibition are unknown. Here we show that thermoinhibition in Arabidopsis thaliana is not autonomously controlled by the embryo but is rather implemented by the endosperm. High temperature is sensed through endospermic phyB by accelerating its reversion from the active signaling Pfr form into the inactive Pr form, as previously described in seedlings. This leads to thermoinhibition mediated by PIFs, mainly PIF1, PIF3 and PIF5. Endospermic PIF3 represses the expression of the endospermic ABA catabolic gene CYP707A1 and promotes endospermic ABA accumulation and release towards the embryo to block its growth. Furthermore, endospermic ABA represses embryonic PIF3 accumulation that would otherwise promote embryonic growth. Hence, under high temperatures PIF3 exerts opposite growth responses in the endosperm and embryo.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fitocromo B , Agricultura , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endosperma/genética , Fitocromo B/genética , Plântula , Sementes/genética , Temperatura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
14.
Annu Rev Plant Biol ; 73: 355-378, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35138879

RESUMO

Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Dormência de Plantas/genética , Sementes/genética
15.
Methods Mol Biol ; 2250: 239-243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900609

RESUMO

We describe methods to separate endosperms and embryos from Arabidopsis thaliana mature seeds in large amounts and to isolate high-quality genomic DNA from those tissues. The resulting materials are suitable for analysis of DNA methylation by bisulfite sequencing or histone modifications by chromatin immunoprecipitation (ChIP).


Assuntos
Arabidopsis/genética , DNA de Plantas/genética , Endosperma/genética , Sementes/genética , Proteínas de Arabidopsis/genética , DNA de Plantas/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Genômica/métodos
16.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34706263

RESUMO

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Assuntos
Arabidopsis/metabolismo , Endosperma/metabolismo , Peptídeos/metabolismo , Plântula/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação , Plantas , Sementes/metabolismo
17.
Plant Cell Physiol ; 51(2): 239-51, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20022976

RESUMO

The stress phytohormone ABA inhibits the developmental transition taking the mature embryo in the dry seed towards a young seedling. ABA also induces the accumulation of the basic leucine zipper (bZIP) transcription factor ABA-insensitive 5 (ABI5) which, apart from blocking endosperm rupture, also protects the embryo by stimulating the expression of late embryogenesis abundant (LEA) genes that conferred osmotolerance during seed maturation. It is unknown whether ABA recruits additional embryonic pathways to control early seedling growth and fitness. Here we identify gia3 (growth insensitive to ABA3), a recessive locus in Arabidopsis mediating cotyledon cellular maturation and ABA-dependent repression of cotyledon expansion and greening. Microarray studies showed that expression of the essential mid-embryogenesis gene Maternal Embryo Effect 26 (MEE26) is induced by ABA during early seedling growth in wild-type (WT) or abi5 plants but not in gia3 mutants. However, we also show that the GIA3 locus controls ABA-dependent gene expression responses that partially overlap with those controlled by ABI5. Thus, the gia3 locus identifies an additional arm of ABA signaling, distinct from that controlled by ABI5, which recruits MEE26 expression and maintains cotyledon embryonic identity. Fine mapping localized the gia3 locus within a 1 Mb interval of chromosome 3, containing a large DNA insertion of a duplicated region of chromosome 2. It remains unknown at present whether gia3 phenotypes are the result of single or multiple genetic alterations.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Germinação , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotilédone/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Genômica , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento Físico do Cromossomo , Reguladores de Crescimento de Plantas/metabolismo
18.
Elife ; 82019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30910007

RESUMO

Seed dormancy is an adaptive trait preventing premature germination out of season. In a previous report (Piskurewicz et al., 2016) we showed that dormancy levels are maternally inherited through the preferential maternal allele expression in the seed endosperm of ALLANTOINASE (ALN), a negative regulator of dormancy. Here we show that suppression of ALN paternal allele expression is imposed by non-canonical RNA-directed DNA methylation (RdDM) of the paternal ALN allele promoter. Dormancy levels are further enhanced by cold during seed development. We show that DNA methylation of the ALN promoter is stimulated by cold in a tissue-specific manner through non-canonical RdDM, involving RDR6 and AGO6. This leads to suppression of ALN expression and further promotion of seed dormancy. Our results suggest that tissue-specific and cold-induced RdDM is superimposed to parental allele imprints to deposit in the seed progeny a transient memory of environmental conditions experienced by the mother plant.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas , RNA/metabolismo , Amidoidrolases/biossíntese , Arabidopsis/genética , Temperatura Baixa , Regiões Promotoras Genéticas
19.
Curr Biol ; 28(16): 2616-2623.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30078560

RESUMO

Chloroplast biogenesis, visible as greening, is the key to photoautotrophic growth in plants. At the organelle level, it requires the development of non-photosynthetic, color-less proplastids to photosynthetically active, green chloroplasts at early stages of plant development, i.e., in germinating seeds. This depends on the import of thousands of different preproteins into the developing organelle by the chloroplast protein import machinery [1]. The preprotein import receptor TOC159 is essential in the process, its mutation blocking chloroplast biogenesis and resulting in albino plants [2]. The molecular mechanisms controlling the onset of chloroplast biogenesis during germination are largely unknown. Germination depends on the plant hormone gibberellic acid (GA) and is repressed by DELLA when GA concentrations are low [3, 4]. Here, we show that DELLA negatively regulates TOC159 protein abundance under low GA. The direct DELLA-TOC159 interaction promotes TOC159 degradation by the ubiquitin/proteasome system (UPS). Moreover, the accumulation of photosynthesis-associated proteins destined for the chloroplast is downregulated posttranscriptionally. Analysis of a model import substrate indicates that it is targeted for removal by the UPS prior to import. Thus, under low GA, the UPS represses chloroplast biogenesis by a dual mechanism comprising the DELLA-dependent destruction of the import receptor TOC159, as well as that of its protein cargo. In conclusion, our data provide a molecular framework for the GA hormonal control of proplastid to chloroplast transition during early plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cloroplastos/fisiologia , GTP Fosfo-Hidrolases/genética , Giberelinas/metabolismo , Proteínas de Membrana/genética , Biogênese de Organelas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Transporte Proteico , Nicotiana/genética , Nicotiana/fisiologia
20.
Elife ; 72018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30149837

RESUMO

To anticipate potential seedling damage, plants block seed germination under unfavorable conditions. Previous studies investigated how seed germination is controlled in response to abiotic stresses through gibberellic and abscisic acid signaling. However, little is known about whether seeds respond to rhizosphere bacterial pathogens. We found that Arabidopsis seed germination is blocked in the vicinity of the plant pathogen Pseudomonas aeruginosa. We identified L-2-amino-4-methoxy-trans-3-butenoic acid (AMB), released by P. aeruginosa, as a biotic compound triggering germination arrest. We provide genetic evidence that in AMB-treated seeds DELLA factors promote the accumulation of the germination repressor ABI5 in a GA-independent manner. AMB production is controlled by the quorum sensing system IQS. In vitro experiments show that the AMB-dependent germination arrest protects seedlings from damage induced by AMB. We discuss the possibility that this could serve as a protective response to avoid severe seedling damage induced by AMB and exposure to a pathogen.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/microbiologia , Germinação , Pseudomonas aeruginosa/fisiologia , Sementes/embriologia , Ácido Abscísico/metabolismo , Aminobutiratos/farmacologia , Especificidade de Anticorpos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Análise Discriminante , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Giberelinas/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Análise dos Mínimos Quadrados , Metabolômica , Sementes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA