RESUMO
Macrophages are components of the innate immune system with key roles in tissue inflammation and repair. It is now evident that macrophages also support organogenesis, but few studies have characterized their identity, ontogeny and function during heart development. Here, we show that the distribution and prevalence of resident macrophages in the subepicardial compartment of the developing heart coincides with the emergence of new lymphatics, and that macrophages interact closely with the nascent lymphatic capillaries. Consequently, global macrophage deficiency led to extensive vessel disruption, with mutant hearts exhibiting shortened and mis-patterned lymphatics. The origin of cardiac macrophages was linked to the yolk sac and foetal liver. Moreover, the Cx3cr1+ myeloid lineage was found to play essential functions in the remodelling of the lymphatic endothelium. Mechanistically, macrophage hyaluronan was required for lymphatic sprouting by mediating direct macrophage-lymphatic endothelial cell interactions. Together, these findings reveal insight into the role of macrophages as indispensable mediators of lymphatic growth during the development of the mammalian cardiac vasculature.
Assuntos
Coração/crescimento & desenvolvimento , Vasos Linfáticos , Macrófagos/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Adesão Celular , Linhagem Celular , Células Endoteliais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Humanos , Inflamação , Linfangiogênese , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Saco VitelinoRESUMO
During vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development.
Assuntos
Fenômenos Fisiológicos Sanguíneos , Hematopoese , Células-Tronco Hematopoéticas/citologia , Animais , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Peixe-ZebraRESUMO
Interactions between developmental signaling pathways govern the formation and function of stem cells. Prostaglandin (PG) E2 regulates vertebrate hematopoietic stem cells (HSC). Similarly, the Wnt signaling pathway controls HSC self-renewal and bone marrow repopulation. Here, we show that wnt reporter activity in zebrafish HSCs is responsive to PGE2 modulation, demonstrating a direct interaction in vivo. Inhibition of PGE2 synthesis blocked wnt-induced alterations in HSC formation. PGE2 modified the wnt signaling cascade at the level of beta-catenin degradation through cAMP/PKA-mediated stabilizing phosphorylation events. The PGE2/Wnt interaction regulated murine stem and progenitor populations in vitro in hematopoietic ES cell assays and in vivo following transplantation. The relationship between PGE2 and Wnt was also conserved during regeneration of other organ systems. Our work provides in vivo evidence that Wnt activation in stem cells requires PGE2, and suggests the PGE2/Wnt interaction is a master regulator of vertebrate regeneration and recovery.
Assuntos
Dinoprostona/metabolismo , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células-Tronco Embrionárias/metabolismo , Fígado/fisiologia , Camundongos , Regeneração , Transdução de Sinais , Peixe-Zebra/embriologia , beta Catenina/metabolismoRESUMO
Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.
Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologiaRESUMO
Haematopoietic stem cell (HSC) homeostasis is tightly controlled by growth factors, signalling molecules and transcription factors. Definitive HSCs derived during embryogenesis in the aorta-gonad-mesonephros region subsequently colonize fetal and adult haematopoietic organs. To identify new modulators of HSC formation and homeostasis, a panel of biologically active compounds was screened for effects on stem cell induction in the zebrafish aorta-gonad-mesonephros region. Here, we show that chemicals that enhance prostaglandin (PG) E2 synthesis increased HSC numbers, and those that block prostaglandin synthesis decreased stem cell numbers. The cyclooxygenases responsible for PGE2 synthesis were required for HSC formation. A stable derivative of PGE2 improved kidney marrow recovery following irradiation injury in the adult zebrafish. In murine embryonic stem cell differentiation assays, PGE2 caused amplification of multipotent progenitors. Furthermore, ex vivo exposure to stabilized PGE2 enhanced spleen colony forming units at day 12 post transplant and increased the frequency of long-term repopulating HSCs present in murine bone marrow after limiting dilution competitive transplantation. The conserved role for PGE2 in the regulation of vertebrate HSC homeostasis indicates that modulation of the prostaglandin pathway may facilitate expansion of HSC number for therapeutic purposes.
Assuntos
Dinoprostona/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Vertebrados , Animais , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Dinoprostona/agonistas , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas Proto-Oncogênicas c-myb/genética , Vertebrados/embriologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genéticaRESUMO
Acetaminophen (APAP) toxicity is the most common drug-induced cause of acute liver failure in the United States. The only available treatment, N-acetylcysteine (NAC), has a limited time window of efficacy, indicating a need for additional therapeutic options. Zebrafish have emerged as a powerful tool for drug discovery. Here, we developed a clinically relevant zebrafish model of APAP toxicity. APAP depleted glutathione stores, elevated aminotransferase levels, increased apoptosis, and caused dose-dependent hepatocyte necrosis. These outcomes were limited by NAC and conserved in zebrafish embryos. In a targeted embryonic chemical screen, prostaglandin E2 (PGE2) was identified as a potential therapeutic agent; in the adult, PGE2 similarly decreased APAP-associated toxicity. Significantly, when combined with NAC, PGE2 extended the time window for a successful intervention, synergistically reducing apoptosis, improving liver enzymes, and preventing death. Use of a wnt reporter zebrafish line and chemical genetic epistasis showed that the effects of PGE2 are mediated through the wnt signaling pathway. Zebrafish can be used as a clinically relevant toxicological model amenable to the identification of additional therapeutics and biomarkers of APAP injury; our data suggest combinatorial PGE2 and NAC treatment would be beneficial for patients with APAP-induced liver damage.
Assuntos
Acetaminofen/toxicidade , Acetilcisteína , Doença Hepática Induzida por Substâncias e Drogas , Dinoprostona/metabolismo , Falência Hepática Aguda , Transdução de Sinais/fisiologia , Peixe-Zebra , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Analgésicos não Narcóticos/toxicidade , Animais , Animais Geneticamente Modificados , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Genes Reporter , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Proteoma/análise , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologiaRESUMO
BACKGROUND: Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS: We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS: Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.
Assuntos
Plaquetas , Hematopoese , Camundongos , Animais , Linhagem da Célula , Cinética , Células-Tronco Hematopoéticas , Células Clonais , Diferenciação CelularRESUMO
Developmental signaling pathways hold the keys to unlocking the promise of adult tissue regeneration, and to inhibiting carcinogenesis. Patients with mutations in the Adenomatous Polyposis Coli (APC) gene are at increased risk of developing hepatoblastoma, an embryonal form of liver cancer, suggesting that Wnt affects hepatic progenitor cells. To elucidate the role of APC loss and enhanced Wnt activity in liver development, we examined APC mutant and wnt inducible transgenic zebrafish. APC(+/-) embryos developed enlarged livers through biased induction of hepatic gene programs and increased proliferation. Conversely, APC(-/-) embryos formed no livers. Blastula transplantations determined that the effects of APC loss were cell autonomous. Induction of wnt modulators confirmed biphasic consequences of wnt activation: endodermal pattern formation and gene expression required suppression of wnt signaling in early somitogenesis; later, increased wnt activity altered endodermal fate by enhancing liver growth at the expense of pancreas formation; these effects persisted into the larval stage. In adult APC(+/-) zebrafish, increased wnt activity significantly accelerated liver regeneration after partial hepatectomy. Similarly, liver regeneration was significantly enhanced in APC(Min/+) mice, indicating the conserved effect of Wnt pathway activation in liver regeneration across vertebrate species. These studies reveal an important and time-dependent role for wnt signaling during liver development and regeneration.
Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Fígado/embriologia , Mutação/genética , Transdução de Sinais , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Animais , Apoptose , Padronização Corporal , Linhagem da Célula , Proliferação de Células , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endoderma/citologia , Endoderma/embriologia , Hepatectomia , Hepatócitos/citologia , Fígado/citologia , Regeneração Hepática , Fenótipo , Células-Tronco/citologia , Fatores de Tempo , beta Catenina/metabolismoRESUMO
More than 80% of patients with the refractory anemia with ring sideroblasts subtype of myelodysplastic syndrome (MDS) have mutations in Splicing Factor 3B, Subunit 1 (SF3B1). We generated a conditional knockin mouse model of the most common SF3B1 mutation, Sf3b1(K700E). Sf3b1(K700E) mice develop macrocytic anemia due to a terminal erythroid maturation defect, erythroid dysplasia, and long-term hematopoietic stem cell (LT-HSC) expansion. Sf3b1(K700E) myeloid progenitors and SF3B1-mutant MDS patient samples demonstrate aberrant 3' splice-site selection associated with increased nonsense-mediated decay. Tet2 loss cooperates with Sf3b1(K700E) to cause a more severe erythroid and LT-HSC phenotype. Furthermore, the spliceosome modulator, E7017, selectively kills SF3B1(K700E)-expressing cells. Thus, SF3B1(K700E) expression reflects the phenotype of the mutation in MDS and may be a therapeutic target in MDS.
Assuntos
Eritropoese/fisiologia , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Spliceossomos/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Eritropoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fosfoproteínas/deficiência , Fosfoproteínas/metabolismo , Mutação Puntual , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/deficiência , Fatores de Processamento de RNA/metabolismoRESUMO
The casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage, whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles. In addition, we identified recurrent somatic mutations in CSNK1A1 on the nondeleted allele of patients with del(5q) MDS. These studies demonstrate that CSNK1A1 plays a central role in the biology of del(5q) MDS and is a promising therapeutic target.
Assuntos
Caseína Quinase I/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 5 , Síndromes Mielodisplásicas/genética , Idoso , Animais , Sequência de Bases , Caseína Quinase I/genética , Primers do DNA , Feminino , Citometria de Fluxo , Haploinsuficiência , Humanos , Masculino , Camundongos , Mutação , Reação em Cadeia da Polimerase , Adulto JovemRESUMO
We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In contrast, myeloid progenitor populations are expanded and skewed toward the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F-positive MPN.
Assuntos
Substituição de Aminoácidos , Células-Tronco Hematopoéticas/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Animais , Antígenos CD/metabolismo , Medula Óssea/patologia , Células da Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Contagem de Células , Diferenciação Celular/genética , Modelos Animais de Doenças , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patologia , Eritropoetina/farmacologia , Expressão Gênica/genética , Perfilação da Expressão Gênica , Hematócrito , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Heterozigoto , Humanos , Janus Quinase 2/antagonistas & inibidores , Células Progenitoras de Megacariócitos/metabolismo , Células Progenitoras de Megacariócitos/patologia , Células Progenitoras de Megacariócitos e Eritrócitos/efeitos dos fármacos , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Células Progenitoras de Megacariócitos e Eritrócitos/patologia , Células Progenitoras de Megacariócitos e Eritrócitos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patologia , Transtornos Mieloproliferativos/tratamento farmacológico , Policitemia Vera/genética , Policitemia Vera/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Baço/efeitos dos fármacos , Baço/patologia , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Análise de SobrevidaRESUMO
We have recently demonstrated through a chemical screen in the zebrafish embryo that prostaglandin E2 (PGE2) is an evolutionarily conserved regulator of hematopoietic stem cell (HSC) number. These results have further been confirmed by in vitro and in vivo studies in the murine model. Bioactive PGE2 derivatives have potential clinical application to accelerate recovery of the hematopoietic system following chemotherapy or irradiation. Ex vivo expansion of HSCs prior to stem cell transplantation may improve reconstitution of hematopoiesis and immune function. This article aims to summarize current knowledge of PGE2-mediated regulation of blood cell homeostasis as well as to discuss the proposed use of PGE2 to expand hematopoietic stem cells for transplantation in the clinical setting.