Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 70: 260-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24125831

RESUMO

The Sicydiinae subfamily (Teleostei: Gobioidei) is the biggest contributor to the diversity of fish communities in river systems of tropical islands. These species are found in the Indo-Pacific area, the Caribbean region and West Africa. They spawn in freshwater, their planktotrophic larvae drift downstream to the sea where they develop, before returning to the rivers to grow and reproduce. Hence, they are called amphidromous. Their phylogeny has been explored using a total of 3545 sites from 5 molecular markers (mitochondrial DNA: 16S rDNA, cytochrome oxidase I, cytochrome b; nuclear DNA: rhodopsin gene and a nuclear marker specially developed for this study, the interferon regulatory factor 2 binding protein 1-IRF2PB1). Sequences were obtained for 59 Sicydiinae specimens of 9 known genera. The Bayesian and maximum likelihood analyses support the monophyly of the subfamily as well as the monophylyof all genera except Sicydium, which is paraphyletic. Five major clades were identified within this subfamily. One clade contained the genus Stiphodon. Another clade contained Sicyopterus, Sicydium and Parasicydium with Sicyopterus as sister genus of Sicydium. The non-monophyly of Sicydium subclade, because it includes the monotypic genus Parasicydium, challenged the validity of Parasicydium genus. Ancestral area reconstruction showed that the subfamily emerged in the Central West Pacific region implying that previous hypotheses proposing a dispersal route for Sicydiinae into the Atlantic Ocean are unsupported by the present analysis. Our results suggest that the hypotheses for the dispersal route of the genus Sicydium should be reconsidered.


Assuntos
Núcleo Celular , Mitocôndrias , Perciformes/genética , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/metabolismo , Citocromos b/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Feminino , Mitocôndrias/metabolismo , Perciformes/classificação , Análise de Sequência de DNA
2.
Biology (Basel) ; 13(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38927326

RESUMO

Indo-Pacific tropical island streams are home to freshwater pipefish (Microphis spp., Syngnathidae). Otoliths were used to uncover life history traits in four species, including a New Caledonian endemic. All four species present the same methodological challenge: their otoliths are small, fragile and mute for growth marks using basic observation tools. Strontium (Sr) is calcium substituent in the mineral lattice, driven by salinity conditions, and thus useful to study diadromous migrations. Synchrotron-based scanning X-ray fluorescence 2D high-resolution mapping allowed us to tackle the global and hyperfine strontium (Sr) distribution. We developed analytical imaging processes to retrieve biological information from otoliths from the data generated via synchrotron analysis. We uncovered plasticity in the life cycle: all species were amphidromous, apart from some freshwater residents from New Caledonia. Understanding life cycle modalities is crucial to categorize species distribution limits and to implement adapted conservation measures, especially when endemic species are at stake. 2D fine-scale images outlined the heterogeneity of Sr distribution: in addition to the trivial Sr incorporation driven by environmental ionic conditions, there is an unusual mosaic arrangement of Sr distribution and we hypothesize that biological control, especially growth during the early life stages, may sometimes overrule stoichiometry. This shows that it is worth studying otolith formation and element integration at imbricated scales, and our methods and results provide a strong basis for future works and prospects in otolith science.

3.
Sci Rep ; 13(1): 4794, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959216

RESUMO

Scientists use otoliths to trace fish life history, especially fish migrations. Otoliths incorporate signatures of individual growth and environmental use. For many species, distinct increment patterns in the otolith are difficult to discern; thus, questions remain about crucial life history information. To unravel the history of such species, we use synchrotron-based scanning X-ray fluorescence. It allows the mapping of elements on the entire otolith at a high spatial resolution. It gives access to precise fish migration history by tagging landmark signature for environmental transition and it also characterises localised growth processes at a mineral level. Freshwater pipefish, which are of conservation concern, have otoliths that are small and fragile. Growth increments are impossible to identify and count; therefore, there is a major lack of knowledge about their life history. We confirm for the first time, by mapping strontium that the two tropical pipefish species studied are diadromous (transition freshwater/marine/freshwater). Mapping of other elements uncovered the existence of different migratory routes during the marine phase. Another major breakthrough is that we can chemically count growth increments solely based on sulphur signal as it is implicated in biomineralization processes. This novel method circumvents reader bias issues and enables age estimation even for otoliths with seemingly untraceable increments. The high spatial resolution elemental mapping methods push back limits of studies on life traits or stock characterisation.


Assuntos
Membrana dos Otólitos , Síncrotrons , Animais , Raios X , Fluorescência , Peixes
4.
Pathogens ; 12(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37513770

RESUMO

This study results from a continued investigation of the occurrence and diversity of parasites of freshwater fish in the Solomon Islands. Thus, we revealed a new host as well as a new site of infection and a new geographical area for the cryptogonimid parasite, Stemmatostoma cribbi (Digenea: Cryptogonimidae). The cryptogonimid species was identified based on general morphology and on molecular data of metacercariae found in the gills of the cleft-lipped goby, Sicyopterus cynocephalus, from Ranongga Island, Western Province of the Solomon Islands. This is the first report of a Stemmatostoma sp. digenean parasitizing fish of the genus Sicyopterus in the Indo-Pacific region and the first report of S. cribbi infection in a fish from the Solomon Islands. Phylogenetic analysis performed by Bayesian inference and maximum likelihood confirmed the presence of the cryptogonimid in a well-supported subclade of Stemmatostoma spp.

5.
Infect Genet Evol ; 94: 104986, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246799

RESUMO

Myxosporeans are microscopic cnidarians associated with severe diseases in aquaculture and wild fish populations. This group of parasitic cnidarians thus warrants close attention concerning its potential impact on susceptible fish stocks. At present, little is known about this group of parasites infecting anguillid eels. From myxospore specimens collected from a freshwater eel (Anguilla marmorata) in the Solomon Islands, we describe a new species belonging to the genus Myxobolus based on an integrative taxonomic analysis of morphological, biological traits and molecular data. Furthermore, we determined the phylogenetic position and relationships of this species among other platysporine myxosporeans. Molecular phylogenetic assessment of small subunit ribosomal DNA showed that the species clusters together with Myxobolus portucalensis and Echinactinomyxon type 5 Özer, Wootten and Shinn, 2002, in a well-supported subclade. This is the first report of a myxosporean parasite infecting fish from the Solomon Islands.


Assuntos
Enguias , Doenças dos Peixes/parasitologia , Myxozoa/classificação , Doenças Parasitárias em Animais/parasitologia , Animais , Melanesia , Myxozoa/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA