Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Biol ; 18(1): 52, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408895

RESUMO

BACKGROUND: Identifying causal variants and genes from human genetic studies of hematopoietic traits is important to enumerate basic regulatory mechanisms underlying these traits, and could ultimately augment translational efforts to generate platelets and/or red blood cells in vitro. To identify putative causal genes from these data, we performed computational modeling using available genome-wide association datasets for platelet and red blood cell traits. RESULTS: Our model identified a joint collection of genomic features enriched at established trait associations and plausible candidate variants. Additional studies associating variation at these loci with change in gene expression highlighted Tropomyosin 1 (TPM1) among our top-ranked candidate genes. CRISPR/Cas9-mediated TPM1 knockout in human induced pluripotent stem cells (iPSCs) enhanced hematopoietic progenitor development, increasing total megakaryocyte and erythroid cell yields. CONCLUSIONS: Our findings may help explain human genetic associations and identify a novel genetic strategy to enhance in vitro hematopoiesis. A similar trait-specific gene prioritization strategy could be employed to help streamline functional validation experiments for virtually any human trait.


Assuntos
Plaquetas/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Tropomiosina/metabolismo , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Humanos , Técnicas In Vitro , Tropomiosina/deficiência
2.
PLoS One ; 19(7): e0298786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959188

RESUMO

An inverse correlation between stature and risk of coronary artery disease (CAD) has been observed in several epidemiologic studies, and recent Mendelian randomization (MR) experiments have suggested causal association. However, the extent to which the effect estimated by MR can be explained by cardiovascular, anthropometric, lung function, and lifestyle-related risk factors is unclear, with a recent report suggesting that lung function traits could fully explain the height-CAD effect. To clarify this relationship, we utilized a well-powered set of genetic instruments for human stature, comprising >1,800 genetic variants for height and CAD. In univariable analysis, we confirmed that a one standard deviation decrease in height (~6.5 cm) was associated with a 12.0% increase in the risk of CAD, consistent with previous reports. In multivariable analysis accounting for effects from up to 12 established risk factors, we observed a >3-fold attenuation in the causal effect of height on CAD susceptibility (3.7%, p = 0.02). However, multivariable analyses demonstrated independent effects of height on other cardiovascular traits beyond CAD, consistent with epidemiologic associations and univariable MR experiments. In contrast with published reports, we observed minimal effects of lung function traits on CAD risk in our analyses, indicating that these traits are unlikely to explain the residual association between height and CAD risk. In sum, these results suggest the impact of height on CAD risk beyond previously established cardiovascular risk factors is minimal and not explained by lung function measures.


Assuntos
Estatura , Doença da Artéria Coronariana , Análise da Randomização Mendeliana , Humanos , Estatura/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Masculino , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Feminino
3.
medRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205563

RESUMO

An inverse correlation between stature and risk of coronary artery disease (CAD) has been observed in several epidemiologic studies, and recent Mendelian randomization (MR) experiments have suggested causal association. However, the extent to which the effect estimated by MR can be explained by established cardiovascular risk factors is unclear, with a recent report suggesting that lung function traits could fully explain the height-CAD effect. To clarify this relationship, we utilized a well-powered set of genetic instruments for human stature, comprising >1,800 genetic variants for height and CAD. In univariable analysis, we confirmed that a one standard deviation decrease in height (~6.5 cm) was associated with a 12.0% increase in the risk of CAD, consistent with previous reports. In multivariable analysis accounting for effects from up to 12 established risk factors, we observed a >3-fold attenuation in the causal effect of height on CAD susceptibility (3.7%, p = 0.02). However, multivariable analyses demonstrated independent effects of height on other cardiovascular traits beyond CAD, consistent with epidemiologic associations and univariable MR experiments. In contrast with published reports, we observed minimal effects of lung function traits on CAD risk in our analyses, indicating that these traits are unlikely to explain the residual association between height and CAD risk. In sum, these results suggest the impact of height on CAD risk beyond previously established cardiovascular risk factors is minimal and not explained by lung function measures.

4.
Nat Genet ; 52(7): 680-691, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541925

RESUMO

We investigated type 2 diabetes (T2D) genetic susceptibility via multi-ancestry meta-analysis of 228,499 cases and 1,178,783 controls in the Million Veteran Program (MVP), DIAMANTE, Biobank Japan and other studies. We report 568 associations, including 286 autosomal, 7 X-chromosomal and 25 identified in ancestry-specific analyses that were previously unreported. Transcriptome-wide association analysis detected 3,568 T2D associations with genetically predicted gene expression in 687 novel genes; of these, 54 are known to interact with FDA-approved drugs. A polygenic risk score (PRS) was strongly associated with increased risk of T2D-related retinopathy and modestly associated with chronic kidney disease (CKD), peripheral artery disease (PAD) and neuropathy. We investigated the genetic etiology of T2D-related vascular outcomes in the MVP and observed statistical SNP-T2D interactions at 13 variants, including coronary heart disease (CHD), CKD, PAD and neuropathy. These findings may help to identify potential therapeutic targets for T2D and genomic pathways that link T2D to vascular outcomes.


Assuntos
Complicações do Diabetes/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Negro ou Afro-Americano , Cromossomos Humanos X , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etnologia , Angiopatias Diabéticas/genética , Europa (Continente) , Feminino , Estudos de Associação Genética , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Polimorfismo de Nucleotídeo Único , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA