RESUMO
Neutrophils have been thought to play a critical role in terminal differentiation of NK cells. Whether this effect is direct or a consequence of global immune changes with effects on NK-cell homeostasis remains unknown. In this study, we used high-resolution flow and mass cytometry to examine NK-cell repertoires in 64 patients with neutropenia and 27 healthy age- and sex-matched donors. A subgroup of patients with chronic neutropenia showed severely disrupted NK-cell homeostasis manifesting as increased frequencies of CD56bright NK cells and a lack of mature CD56dim NK cells. These immature NK-cell repertoires were characterized by expression of the proliferation/exhaustion markers Ki-67, Tim-3, and TIGIT and displayed blunted tumor target cell responses. Systems-level immune mapping revealed that the changes in immunophenotypes were confined to NK cells, leaving T-cell differentiation intact. RNA sequencing of NK cells from these patients showed upregulation of a network of genes, including TNFSF9, CENPF, MKI67, and TOP2A, associated with apoptosis and the cell cycle, but different from the conventional CD56bright signatures. Profiling of 249 plasma proteins showed a coordinated enrichment of pathways related to apoptosis and cell turnover, which correlated with immature NK-cell repertoires. Notably, most of these patients exhibited severe-grade neutropenia, suggesting that the profoundly altered NK-cell homeostasis was connected to the severity of their underlying etiology. Hence, although our data suggest that neutrophils are dispensable for NK-cell development and differentiation, some patients displayed a specific gap in the NK repertoire, associated with poor cytotoxic function and more severe disease manifestations.
Assuntos
Células Matadoras Naturais/patologia , Neutropenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Receptor Celular 2 do Vírus da Hepatite A/análise , Homeostase , Humanos , Lactente , Antígeno Ki-67/análise , Masculino , Pessoa de Meia-Idade , Receptores Imunológicos/análise , Índice de Gravidade de Doença , Adulto JovemRESUMO
AIM: To evaluate the activity and safety of the PD-1 antibody pembrolizumab in adult patients with advanced osteosarcoma. MATERIAL AND METHODS: The study was a single-arm, open-label, phase 2 trial in patients with unresectable, relapsed osteosarcoma. The primary endpoint was clinical benefit rate (CBR) at 18 weeks of treatment, defined as complete response, partial response, or stable disease using RECIST v1.1. The trial had a Simon´s two-stage design, and ≥ 3 of 12 patients with clinical benefit in stage 1 were required to proceed to stage 2. The trial is registered with ClinicalTrials.gov, number NCT03013127. NanoString analysis was performed to explore tumor gene expression signatures and pathways. RESULTS: Twelve patients were enrolled and received study treatment. No patients had clinical benefit at 18 weeks of treatment, and patient enrollment was stopped after completion of stage 1. Estimated median progression-free survival was 1.7 months (95% CI 1.2-2.2). At time of data cut-off, 11 patients were deceased due to osteosarcoma. Median overall survival was 6.6 months (95% CI 3.8-9.3). No treatment-related deaths or drug-related grade 3 or 4 adverse events were observed. PD-L1 expression was positive in one of 11 evaluable tumor samples, and the positive sample was from a patient with a mixed treatment response. CONCLUSION: In this phase 2 study in advanced osteosarcoma, pembrolizumab was well-tolerated but did not show clinically significant antitumor activity. Future trials with immunomodulatory agents in osteosarcoma should explore combination strategies in patients selected based on molecular profiles associated with response.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Osteossarcoma/tratamento farmacológico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/mortalidade , Terapia Combinada , Fluordesoxiglucose F18 , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Metástase Neoplásica , Estadiamento de Neoplasias , Osteossarcoma/diagnóstico , Osteossarcoma/etiologia , Osteossarcoma/mortalidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Resultado do TratamentoRESUMO
Adoptive transfer of allogeneic NK cells holds great promise for cancer immunotherapy. There is a variety of protocols to expand NK cells in vitro, most of which are based on stimulation with cytokines alone or in combination with feeder cells. Although IL-15 is essential for NK cell homeostasis in vivo, it is commonly used at supraphysiological levels to induce NK cell proliferation in vitro. As a result, adoptive transfer of such IL-15-addicted NK cells is associated with cellular stress because of sudden cytokine withdrawal. In this article, we describe a dose-dependent addiction to IL-15 during in vitro expansion of human NK cells, leading to caspase-3 activation and profound cell death upon IL-15 withdrawal. NK cell addiction to IL-15 was tightly linked to the BCL-2/BIM ratio, which rapidly dropped during IL-15 withdrawal. Furthermore, we observed a proliferation-dependent induction of BIM short, a highly proapoptotic splice variant of BIM in IL-15-activated NK cells. These findings shed new light on the molecular mechanisms involved in NK cell apoptosis following cytokine withdrawal and may guide future NK cell priming strategies in a cell therapy setting.
Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Proliferação de Células/efeitos dos fármacos , Interleucina-15/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Humanos , Interleucina-15/imunologia , Células K562 , Células Matadoras Naturais/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Recently, FGFR1 was found to be overexpressed in osteosarcoma and represents an important target for precision medicine. However, because targeted cancer therapy based on FGFR inhibitors has so far been less efficient than expected, a detailed understanding of the target is important. We have here applied proximity-dependent biotin labeling combined with label-free quantitative mass spectrometry to identify determinants of FGFR1 activity in an osteosarcoma cell line. Many known FGFR interactors were identified (e.g. FRS2, PLCG1, RSK2, SRC), but the data also suggested novel determinants. A strong hit in our screen was the tyrosine phosphatase PTPRG. We show that PTPRG and FGFR1 interact and colocalize at the plasma membrane where PTPRG directly dephosphorylates activated FGFR1. We further show that osteosarcoma cell lines depleted for PTPRG display increased FGFR activity and are hypersensitive to stimulation by FGF1. In addition, PTPRG depletion elevated cell growth and negatively affected the efficacy of FGFR kinase inhibitors. Thus, PTPRG may have future clinical relevance by being a predictor of outcome after FGFR inhibitor treatment.
Assuntos
Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Fatores de Crescimento de Fibroblastos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Osteossarcoma/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteômica , Reprodutibilidade dos TestesRESUMO
Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs.
Assuntos
RNA Fúngico/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sumoilação , Fator de Transcrição TFIID/genética , Fatores de Transcrição/genética , Proteínas rap1 de Ligação ao GTP/genética , Cromatina/genética , Cromatina/metabolismo , Estudos de Associação Genética , Regiões Promotoras Genéticas , RNA Fúngico/genética , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismoRESUMO
The aim of this study was to identify microRNAs in urinary exosomes that are differently expressed in prostate cancer patients and healthy donors. For this purpose, RNA was extracted from urinary exosomes from 20 prostate cancer patients and 9 healthy males and the microRNAs were analyzed by next generation sequencing. Interestingly, 5 microRNAs - miR-196a-5p, miR-34a-5p, miR-143-3p, miR-501-3p and miR-92a-1-5p - were significantly downregulated in exosomes from prostate cancer patients. Furthermore, RT-qPCR analysis of an independent cohort of 28 prostate cancer patients and 19 healthy males confirmed that miR-196a-5p and miR-501-3p were downregulated in prostate cancer samples. These results suggest that specific microRNAs in urinary exosomes might serve as non-invasive biomarkers for prostate cancer. In particular, miR-196a-5p and miR-501-3p are promising biomarkers that need to be further studied in large patient cohorts.
Assuntos
Exossomos/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/urina , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/isolamento & purificação , MicroRNAs/urina , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Próstata/diagnóstico , Curva ROC , Reprodutibilidade dos TestesRESUMO
Planning for adaptation to climate change is often regarded to be a local imperative and considered to be more effective if grounded on a solid evidence base and recognisant of relevant climate projections. Research has already documented some of the challenges of making climate information usable in decision-making but has not yet sufficiently reflected on the role of the wider institutional and regulatory context. This article examines the impact of the external institutional context on the use and usability of climate projections in local government through an analysis of 44 planning and climate change (adaptation) documents and 54 semi-structured interviews with planners in England and Germany conducted between July 2013 and May 2014. We show that there is little demand for climate projections in local adaptation planning in either country due to existing policy, legal and regulatory frameworks. Local government in England has not only experienced a decline in use of climate projections, but also the waning of the climate change adaptation agenda more widely, amidst changes in the planning and regulatory framework and severe budget cuts. In Germany, spatial planning makes substantial use of past and present climate data, but the strictly regulated nature of planning prevents the use of climate projections, due to their inherent uncertainties. Findings from the two countries highlight that if we are to better understand the usability of climate projections, we need to be more aware of the institutional context within which planning decisions are made. Otherwise we run the risk of continuing to provide tools and information that are of limited use within their intended context.
RESUMO
BACKGROUND: Sarcomas are rare, phenotypically heterogeneous cancers that disproportionately affect the young. Outside rare syndromes, the nature, extent, and clinical significance of their genetic origins are not known. We aimed to investigate the genetic basis for bone and soft-tissue sarcoma seen in routine clinical practice. METHODS: In this genetic study, we included 1162 patients with sarcoma from four cohorts (the International Sarcoma Kindred Study [ISKS], 966 probands; Project GENESIS, 48 probands; Asan Bio-Resource Center, 138 probands; and kConFab, ten probands), who were older than 15 years at the time of consent and had a histologically confirmed diagnosis of sarcoma, recruited from specialist sarcoma clinics without regard to family history. Detailed clinical, pathological, and pedigree information was collected, and cancer diagnoses in probands and relatives were independently verified. Targeted exon sequencing using blood (n=1114) or saliva (n=48) samples was done on 72 genes (selected due to associations with increased cancer risk) and rare variants were stratified into classes approximating the International Agency for Research on Cancer (IARC) clinical classification for genetic variation. We did a case-control rare variant burden analysis using 6545 Caucasian controls included from three cohorts (ISKS, 235 controls; LifePool, 2010 controls; and National Heart, Lung, and Blood Institute Exome Sequencing Project [ESP], 4300 controls). FINDINGS: The median age at cancer diagnosis in 1162 sarcoma probands was 46 years (IQR 29-58), 170 (15%) of 1162 probands had multiple primary cancers, and 155 (17%) of 911 families with informative pedigrees fitted recognisable cancer syndromes. Using a case-control rare variant burden analysis, 638 (55%) of 1162 sarcoma probands bore an excess of pathogenic germline variants (combined odds ratio [OR] 1·43, 95% CI 1·24-1·64, p<0·0001), with 227 known or expected pathogenic variants occurring in 217 individuals. All classes of pathogenic variants (known, expected, or predicted) were associated with earlier age of cancer onset. In addition to TP53, ATM, ATR, and BRCA2, an unexpected excess of functionally pathogenic variants was seen in ERCC2. Probands were more likely than controls to have multiple pathogenic variants compared with the combined control cohort group and the LifePool control cohort (OR 2·22, 95% CI 1·57-3·14, p=1·2â×â10(-6)) and the cumulative burden of multiple variants correlated with earlier age at cancer diagnosis (Mantel-Cox log-rank test for trend, p=0·0032). 66 of 1162 probands carried notifiable variants following expert clinical review (those recognised to be clinically significant to health and about which patients should be advised), whereas 293 (25%) probands carried variants with potential therapeutic significance. INTERPRETATION: About half of patients with sarcoma have putatively pathogenic monogenic and polygenic variation in known and novel cancer genes, with implications for risk management and treatment. FUNDING: Rainbows for Kate Foundation, Johanna Sewell Research Foundation, Australian National Health and Medical Research Council, Cancer Australia, Sarcoma UK, National Cancer Institute, Liddy Shriver Sarcoma Initiative.
Assuntos
Biomarcadores Tumorais/genética , Exoma/genética , Mutação/genética , Saliva/química , Sarcoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Recém-Nascido , Agências Internacionais , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Linhagem , Prognóstico , Fatores de Risco , Sarcoma/sangue , Adulto JovemRESUMO
Differentiation of osteoblasts from mesenchymal stem cells (MSCs) is an integral part of bone development and homeostasis, and may when improperly regulated cause disease such as bone cancer or osteoporosis. Using unbiased high-throughput methods we here characterize the landscape of global changes in gene expression, histone modifications, and DNA methylation upon differentiation of human MSCs to the osteogenic lineage. Furthermore, we provide a first genome-wide characterization of DNA binding sites of the bone master regulatory transcription factor Runt-related transcription factor 2 (RUNX2) in human osteoblasts, revealing target genes associated with regulation of proliferation, migration, apoptosis, and with a significant overlap with p53 regulated genes. These findings expand on emerging evidence of a role for RUNX2 in cancer, including bone metastases, and the p53 regulatory network. We further demonstrate that RUNX2 binds to distant regulatory elements, promoters, and with high frequency to gene 3' ends. Finally, we identify TEAD2 and GTF2I as novel regulators of osteogenesis.
Assuntos
Diferenciação Celular/genética , Osteogênese/genética , Processamento Alternativo/genética , Sequência de Bases , Sítios de Ligação , Linhagem da Célula/genética , Cromatina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Epigênese Genética , Genoma Humano/genética , Humanos , Células-Tronco Mesenquimais/citologia , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents' assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents' comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized.
RESUMO
The cyclin-dependent kinase Cdc28 is the master regulator of the cell cycle in Saccharomyces cerevisiae. Cdc28 initiates the cell cycle by activating cell-cycle-specific transcription factors that switch on a transcriptional program during late G1 phase. Cdc28 also has a cell-cycle-independent, direct function in regulating basal transcription, which does not require its catalytic activity. However, the exact role of Cdc28 in basal transcription remains poorly understood, and a function for its kinase activity has not been fully explored. Here we show that the catalytic activity of Cdc28 is important for basal transcription. Using a chemical-genetic screen for mutants that specifically require the kinase activity of Cdc28 for viability, we identified a plethora of basal transcription factors. In particular, CDC28 interacts genetically with genes encoding kinases that phosphorylate the C-terminal domain of RNA polymerase II, such as KIN28. ChIP followed by high-throughput sequencing (ChIP-seq) revealed that Cdc28 localizes to at least 200 genes, primarily with functions in cellular homeostasis, such as the plasma membrane proton pump PMA1. Transcription of PMA1 peaks early in the cell cycle, even though the promoter sequences of PMA1 (as well as the other Cdc28-enriched ORFs) lack cell-cycle elements, and PMA1 does not recruit Swi4/6-dependent cell-cycle box-binding factor/MluI cell-cycle box binding factor complexes. Finally, we found that recruitment of Cdc28 and Kin28 to PMA1 is mutually dependent and that the activity of both kinases is required for full phosphorylation of C-terminal domain-Ser5, for efficient transcription, and for mRNA capping. Our results reveal a mechanism of cell-cycle-dependent regulation of basal transcription.
Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fosforilação , Capuzes de RNA , RNA Polimerase II/metabolismo , RNA Mensageiro/genéticaRESUMO
BACKGROUND: Recent developments in deep (next-generation) sequencing technologies are significantly impacting medical research. The global analysis of protein coding regions in genomes of interest by whole exome sequencing is a widely used application. Many technologies for exome capture are commercially available; here we compare the performance of four of them: NimbleGen's SeqCap EZ v3.0, Agilent's SureSelect v4.0, Illumina's TruSeq Exome, and Illumina's Nextera Exome, all applied to the same human tumor DNA sample. RESULTS: Each capture technology was evaluated for its coverage of different exome databases, target coverage efficiency, GC bias, sensitivity in single nucleotide variant detection, sensitivity in small indel detection, and technical reproducibility. In general, all technologies performed well; however, our data demonstrated small, but consistent differences between the four capture technologies. Illumina technologies cover more bases in coding and untranslated regions. Furthermore, whereas most of the technologies provide reduced coverage in regions with low or high GC content, the Nextera technology tends to bias towards target regions with high GC content. CONCLUSIONS: We show key differences in performance between the four technologies. Our data should help researchers who are planning exome sequencing to select appropriate exome capture technology for their particular application.
Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Composição de Bases , Humanos , Mutação INDEL , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos TestesRESUMO
Follicular lymphoma (FL) is the most common indolent type of B-cell non-Hodgkin lymphoma. Advances in treatment have improved overall survival, but early relapse or transformation to aggressive disease is associated with inferior outcome. To identify early genetic events and track tumor clonal evolution, we performed multi-omics analysis of 94 longitudinal biopsies from 44 FL patients; 22 with transformation (tFL) and 22 with relapse without transformation (nFL). Deep whole-exome sequencing confirmed recurrent mutations in genes encoding epigenetic regulators (CREBBP, KMT2D, EZH2, EP300), with similar mutational landscape in nFL and tFL patients. Calculation of genomic distances between longitudinal samples revealed complex evolutionary patterns in both subgroups. CREBBP and KMT2D mutations were identified as genetic events that occur early in the disease course, and cases with CREBBP KAT domain mutations had low risk of transformation. Gains in chromosomes 12 and 18 (TCF4), and loss in 6q were identified as early and stable copy number alterations. Identification of such early and stable genetic events may provide opportunities for early disease detection and disease monitoring. Integrative analysis revealed that tumors with EZH2 mutations exhibited reduced gene expression of numerous histone genes, including histone linker genes. This might contribute to the epigenetic dysregulation in FL.
Assuntos
Genômica , Linfoma Folicular , Mutação , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Genômica/métodos , Adulto , Sequenciamento do Exoma , Variações do Número de Cópias de DNA , Proteína de Ligação a CREB/genética , Estudos Longitudinais , Idoso de 80 Anos ou mais , MultiômicaRESUMO
Tumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Here, we applied single-cell RNA sequencing and T-cell receptor sequencing combined with high-dimensional cytometry to decipher the heterogeneity of intratumoral Tregs in diffuse large B-cell lymphoma and follicular lymphoma (FL), compared with that in nonmalignant tonsillar tissue. We identified 3 distinct transcriptional states of Tregs: resting, activated, and unconventional LAG3+FOXP3- Tregs. Activated Tregs were enriched in B-NHL tumors, coexpressed several checkpoint receptors, and had stronger immunosuppressive activity compared with resting Tregs. In FL, activated Tregs were found in closer proximity to CD4+ and CD8+ T cells than other cell types. Furthermore, we used a computational approach to develop unique gene signature matrices, which were used to enumerate each Treg subset in cohorts with bulk gene expression data. In 2 independent FL cohorts, activated Tregs was the major subset, and high abundance was associated with adverse outcome. This study demonstrates that Tregs infiltrating B-NHL tumors are transcriptionally and functionally diverse. Highly immunosuppressive activated Tregs were enriched in tumor tissue but absent in the peripheral blood. Our data suggest that a deeper understanding of Treg heterogeneity in B-NHL could open new paths for rational drug design, facilitating selective targeting to improve antitumor immunity.
Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Humanos , Linfócitos T Reguladores , Linfócitos T CD8-Positivos , Prognóstico , Imunossupressores , Microambiente TumoralRESUMO
The vitamin A metabolite all-trans retinoic acid (ATRA; tretinoin) has anticancer potential. However, lack of clinical success has prevented its approval for solid tumours. Herein, we propose combining short-term low-dose ATRA with fimaporfin-based photodynamic therapy (ATRA+PDT) for the improved treatment of solid cancers. Compared to monotherapies, ATRA+PDT induced synergistic cytotoxic responses including promotion of apoptosis in colon and breast carcinoma cell lines. Neither enhanced activity of alkaline phosphatase (ALP) nor increased expression of CD133 was detected after ATRA treatment indicating that the improved therapeutic effect of ATRA+PDT is independent of the differentiation state of the cancer cells. In the human colorectal adenocarcinoma cell line HT-29, the effect of ATRA+PDT on gene expression was evaluated by RNA sequencing (RNA-seq). We identified 1129 differentially expressed genes (DEGs) after ATRA+PDT compared to PDT. Ingenuity Pathway Analysis (IPA) predicted the unfolded protein response (UPR), interferon (IFN) signaling and retinoic acid-mediated apoptosis signaling as strongly activated canonical pathways after ATRA+PDT compared to PDT. A validation of the RNA-sec data by RT-qPCR revealed that ATRA+PDT elevated mRNA expression of early growth response 1 (EGR1) and strongly the stress-induced activating transcription factor 3 (ATF3), of which was confirmed on the protein level. In addition, ATRA+PDT abolished mRNA expression of regenerating islet-derived protein 4 (REG4). During the first 20 days post-ATRA+PDT, we obtained significant anti-tumour responses in HT-29 xenografts, including complete responses in 2/5 mice. In conclusion, ATRA+PDT represent a novel combination therapy for solid tumours that should be further tested in immunocompetent preclinical models.
Assuntos
Fotoquimioterapia , Vitamina A , Humanos , Camundongos , Animais , Vitamina A/farmacologia , Fator 3 Ativador da Transcrição , Fosfatase Alcalina , Proteínas Associadas a Pancreatite , Tretinoína/farmacologia , Apoptose , RNA Mensageiro , Interferons/farmacologia , RNA , Linhagem Celular TumoralRESUMO
Although microRNAs (miRNAs) contribute to all hallmarks of cancer, miRNA dysregulation in metastasis remains poorly understood. The aim of this work was to reliably identify miRNAs associated with metastatic progression of colorectal cancer (CRC) using novel and previously published next-generation sequencing (NGS) datasets generated from 268 samples of primary (pCRC) and metastatic CRC (mCRC; liver, lung and peritoneal metastases) and tumor adjacent tissues. Differential expression analysis was performed using a meticulous bioinformatics pipeline, including only bona fide miRNAs, and utilizing miRNA-tailored quality control and processing. Five miRNAs were identified as up-regulated at multiple metastatic sites Mir-210_3p, Mir-191_5p, Mir-8-P1b_3p [mir-141-3p], Mir-1307_5p and Mir-155_5p. Several have previously been implicated in metastasis through involvement in epithelial-to-mesenchymal transition and hypoxia, while other identified miRNAs represent novel findings. The use of a publicly available pipeline facilitates reproducibility and allows new datasets to be added as they become available. The set of miRNAs identified here provides a reliable starting-point for further research into the role of miRNAs in metastatic progression.
RESUMO
BACKGROUND: Colorectal liver metastasis (CLM) is a leading cause of colorectal cancer mortality, and the response to immune checkpoint inhibition (ICI) in microsatellite-stable CRC has been disappointing. Administration of cytotoxic chemotherapy may cause increased density of tumor-infiltrating T cells, which has been associated with improved response to ICI. This study aimed to quantify and characterize T-cell infiltration in CLM using T-cell receptor (TCR) repertoire sequencing. Eighty-five resected CLMs from patients included in the Oslo CoMet study were subjected to TCR repertoire sequencing. Thirty-five and 15 patients had received neoadjuvant chemotherapy (NACT) within a short or long interval, respectively, prior to resection, while 35 patients had not been exposed to NACT. T-cell fractions were calculated, repertoire clonality was analyzed based on Hill evenness curves, and TCR sequence convergence was assessed using network analysis. RESULTS: Increased T-cell fractions (10.6% vs. 6.3%) were detected in CLMs exposed to NACT within a short interval prior to resection, while modestly increased clonality was observed in NACT-exposed tumors independently of the timing of NACT administration and surgery. While private clones made up >90% of detected clones, network connectivity analysis revealed that public clones contributed the majority of TCR sequence convergence. CONCLUSIONS: TCR repertoire sequencing can be used to quantify T-cell infiltration and clonality in clinical samples. This study provides evidence to support chemotherapy-driven T-cell clonal expansion in CLM in a clinical context.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genéticaRESUMO
Solitary fibrous tumour (SFT) is a mesenchymal neoplasm characterised by pathognomonic NAB2-STAT6 gene fusions. The clinical implications and prognostic value of different fusion variants has not been clarified. In the current study, we explore the clinicopathological, prognostic and molecular differences between tumours with different fusions. Thirty-nine patients with localised, extrameningeal SFT were included, of whom 20 developed distant recurrence and 19 were without recurrence after long term follow-up. Capture-based RNA sequencing identified 12 breakpoint variants, which were categorised into two groups based on the STAT6 domain composition in the predicted chimeric proteins. Twenty-one of 34 (62%) sequenced tumours had fusions with most of the STAT6 domains intact and were classified as STAT6-Full. Thirteen tumours (38%) contained only the transactivation domain of STAT6 and were classified as STAT6-TAD. Tumours with STAT6-TAD fusions had a higher mitotic count (p=0.016) and were associated with inferior recurrence-free interval (p=0.004) and overall survival (p=0.012). Estimated 10-year recurrence-free survival was 25% for patients with STAT6-TAD tumours compared to 78% for the STAT6-Full group. Distinct transcriptional signatures between the fusion groups were identified, including higher expression of FGF2 in the STAT6-TAD group and IGF2, EGR2, PDGFRB, STAT6 and several extracellular matrix genes in STAT6-Full tumours. In summary, we demonstrate that NAB2-STAT6 fusion variants are associated with distinct clinicopathological and molecular characteristics and have prognostic significance in extrameningeal SFT.
Assuntos
Fusão Gênica/genética , Proteínas Repressoras/genética , Fator de Transcrição STAT6/genética , Tumores Fibrosos Solitários/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT6/metabolismo , Tumores Fibrosos Solitários/metabolismoRESUMO
Precision CRISPR gene editing relies on the cellular homology-directed DNA repair (HDR) to introduce custom DNA sequences to target sites. The HDR editing efficiency varies between cell types and genomic sites, and the sources of this variation are incompletely understood. Here, we have studied the effect of 450 DNA repair protein-Cas9 fusions on CRISPR genome editing outcomes. We find the majority of fusions to improve precision genome editing only modestly in a locus- and cell-type specific manner. We identify Cas9-POLD3 fusion that enhances editing by speeding up the initiation of DNA repair. We conclude that while DNA repair protein fusions to Cas9 can improve HDR CRISPR editing, most need to be optimized to the cell type and genomic site, highlighting the diversity of factors contributing to locus-specific genome editing outcomes.