Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(7): 3627-3636, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32019878

RESUMO

The chaperone protein SmgGDS promotes cell-cycle progression and tumorigenesis in human breast and nonsmall cell lung cancer. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, facilitate the activation of oncogenic members of the Ras and Rho families of small GTPases through membrane trafficking via regulation of the prenylation pathway. SmgGDS-607 interacts with newly synthesized preprenylated small GTPases, while SmgGDS-558 interacts with prenylated small GTPases. We determined that cancer cells have a high ratio of SmgGDS-607:SmgGDS-558 (607:558 ratio), and this elevated ratio is associated with reduced survival of breast cancer patients. These discoveries suggest that targeting SmgGDS splicing to lower the 607:558 ratio may be an effective strategy to inhibit the malignant phenotype generated by small GTPases. Here we report the development of a splice-switching oligonucleotide, named SSO Ex5, that lowers the 607:558 ratio by altering exon 5 inclusion in SmgGDS pre-mRNA (messenger RNA). Our results indicate that SSO Ex5 suppresses the prenylation of multiple small GTPases in the Ras, Rho, and Rab families and inhibits ERK activity, resulting in endoplasmic reticulum (ER) stress, the unfolded protein response, and ultimately apoptotic cell death in breast and lung cancer cell lines. Furthermore, intraperitoneal (i.p.) delivery of SSO Ex5 in MMTV-PyMT mice redirects SmgGDS splicing in the mammary gland and slows tumorigenesis in this aggressive model of breast cancer. Taken together, our results suggest that the high 607:558 ratio is required for optimal small GTPase prenylation, and validate this innovative approach of targeting SmgGDS splicing to diminish malignancy in breast and lung cancer.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilação de Proteína , Splicing de RNA
2.
Yale J Biol Med ; 95(1): 45-56, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35370486

RESUMO

Successful hematopoietic cell transplantation (HCT) depends on rapid engraftment of the progenitor and stem cells that will reestablish hematopoiesis. Rap1A and Rap1B are two closely related small GTPases that may affect platelet and neutrophil engraftment during HCT through their roles in cell adhesion and migration. ß-adrenergic signaling may regulate the participation of Rap1A and Rap1B in engraftment through their inhibition or activation. We conducted a correlative study of a randomized controlled trial evaluating the effects of the nonselective ß-antagonist propranolol on expression and prenylation of Rap1A and Rap1B during neutrophil and platelet engraftment in 25 individuals receiving an autologous HCT for multiple myeloma. Propranolol was administered for 1 week prior to and 4 weeks following HCT. Blood was collected 7 days (baseline) and 2 days (Day -2) before HCT, and 28 days after HCT (Day +28). Circulating polymorphonuclear cells (PMNC) were isolated and analyzed via immunoblotting to determine levels of prenylated and total Rap1A versus Rap1B. Twelve participants were randomized to the intervention and 13 to the control. Rap1A expression significantly correlated with Rap1B expression. Rap1B expression significantly correlated with slower platelet engraftment; however, this association was not observed in the propranolol-treated group. There were no significant associations between neutrophil engraftment and Rap1A or Rap1B expression. Post hoc exploratory analyses did not reveal an association between social health variables and Rap1A or Rap1B expression. This study identifies a greater regulatory role for Rap1B than Rap1A in platelet engraftment and suggests a possible role for ß-adrenergic signaling in modulating Rap1B function during HCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Propranolol , Adrenérgicos , Humanos , Propranolol/farmacologia , Transdução de Sinais/fisiologia , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
3.
J Biol Chem ; 291(12): 6534-45, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814130

RESUMO

The small GTPase DiRas1 has tumor-suppressive activities, unlike the oncogenic properties more common to small GTPases such as K-Ras and RhoA. Although DiRas1 has been found to be a tumor suppressor in gliomas and esophageal squamous cell carcinomas, the mechanisms by which it inhibits malignant phenotypes have not been fully determined. In this study, we demonstrate that DiRas1 binds to SmgGDS, a protein that promotes the activation of several oncogenic GTPases. In silico docking studies predict that DiRas1 binds to SmgGDS in a manner similar to other small GTPases. SmgGDS is a guanine nucleotide exchange factor for RhoA, but we report here that SmgGDS does not mediate GDP/GTP exchange on DiRas1. Intriguingly, DiRas1 acts similarly to a dominant-negative small GTPase, binding to SmgGDS and inhibiting SmgGDS binding to other small GTPases, including K-Ras4B, RhoA, and Rap1A. DiRas1 is expressed in normal breast tissue, but its expression is decreased in most breast cancers, similar to its family member DiRas3 (ARHI). DiRas1 inhibits RhoA- and SmgGDS-mediated NF-κB transcriptional activity in HEK293T cells. We also report that DiRas1 suppresses basal NF-κB activation in breast cancer and glioblastoma cell lines. Taken together, our data support a model in which DiRas1 expression inhibits malignant features of cancers in part by nonproductively binding to SmgGDS and inhibiting the binding of other small GTPases to SmgGDS.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/enzimologia , Carcinoma Ductal de Mama/enzimologia , GTP Fosfo-Hidrolases/química , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Supressoras de Tumor/química , Proteína rhoA de Ligação ao GTP
4.
J Biol Chem ; 289(10): 6862-6876, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24415755

RESUMO

Ras family small GTPases localize at the plasma membrane, where they can activate oncogenic signaling pathways. Understanding the mechanisms that promote membrane localization of GTPases will aid development of new therapies to inhibit oncogenic signaling. We previously reported that SmgGDS splice variants promote prenylation and trafficking of GTPases containing a C-terminal polybasic region and demonstrated that SmgGDS-607 interacts with nonprenylated GTPases, whereas SmgGDS-558 interacts with prenylated GTPases in cells. The mechanism that SmgGDS-607 and SmgGDS-558 use to differentiate between prenylated and nonprenylated GTPases has not been characterized. Here, we provide evidence that SmgGDS-607 associates with GTPases through recognition of the last amino acid in the CAAX motif. We show that SmgGDS-607 forms more stable complexes in cells with nonprenylated GTPases that will become geranylgeranylated than with nonprenylated GTPases that will become farnesylated. These binding relationships similarly occur with nonprenylated SAAX mutants. Intriguingly, farnesyltransferase inhibitors increase the binding of WT K-Ras to SmgGDS-607, indicating that the pharmacological shunting of K-Ras into the geranylgeranylation pathway promotes K-Ras association with SmgGDS-607. Using recombinant proteins and prenylated peptides corresponding to the C-terminal sequences of K-Ras and Rap1B, we found that both SmgGDS-607 and SmgGDS-558 directly bind the GTPase C-terminal region, but the specificity of the SmgGDS splice variants for prenylated versus nonprenylated GTPases is diminished in vitro. Finally, we present structural homology models and data from functional prediction software to define both similar and unique features of SmgGDS-607 when compared with SmgGDS-558.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteínas Monoméricas de Ligação ao GTP/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Modelos Químicos , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Prenilação , Análise de Sequência de Proteína/métodos , Software
5.
Org Lett ; 25(36): 6767-6772, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669435

RESUMO

Prenylated proteins contain C15 or C20 isoprenoids linked to cysteine residues positioned near their C-termini. Here we describe the preparation of isoprenoid diphosphate analogues incorporating diazirine groups that can be used to probe interactions between prenylated proteins and other proteins that interact with them. Studies using synthetic peptides and whole proteins demonstrate that these diazirine analogues are efficient substrates for prenyltransferases. Photo-cross-linking experiments using peptides incorporating the diazirine-functionalized isoprenoids selectively cross-link to several different proteins. These new isoprenoid analogues should be broadly useful in the studies of protein prenylation.


Assuntos
Diazometano , Difosfatos , Peptídeos , Cisteína , Terpenos
7.
J Biol Chem ; 285(46): 35255-66, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20709748

RESUMO

Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.


Assuntos
Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Prenilação de Proteína , Processamento Alternativo , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
8.
Mol Cancer Res ; 12(1): 130-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197117

RESUMO

UNLABELLED: Breast cancer malignancy is promoted by the small GTPases RhoA and RhoC. SmgGDS is a guanine nucleotide exchange factor that activates RhoA and RhoC in vitro. We previously reported that two splice variants of SmgGDS, SmgGDS-607, and SmgGDS-558, have different characteristics in binding and transport of small GTPases. To define the role of SmgGDS in breast cancer, we tested the expression of SmgGDS in breast tumors, and the role of each splice variant in proliferation, tumor growth, Rho activation, and NF-κB transcriptional activity in breast cancer cells. We show upregulated SmgGDS protein expression in breast cancer samples compared with normal breast tissue. In addition, Kaplan-Meier survival curves indicated that patients with high SmgGDS expression in their tumors had worse clinical outcomes. Knockdown of SmgGDS-558, but not SmgGDS-607, in breast cancer cells decreased proliferation, in vivo tumor growth, and RhoA activity. Furthermore, we found that SmgGDS promoted a Rho-dependent activation of the transcription factor NF-κB, which provides a potential mechanism to define how SmgGDS-mediated activation of RhoA promotes breast cancer. This study demonstrates that elevated SmgGDS expression in breast tumors correlates with poor survival, and that SmgGDS-558 plays a functional role in breast cancer malignancy. Taken together, these findings define SmgGDS-558 as a unique promoter of RhoA and NF-κB activity and a novel therapeutic target in breast cancer. IMPLICATIONS: This study defines a new mechanism to regulate the activities of RhoA and NF-κB in breast cancer cells, and identifies SmgGDS-558 as a novel promoter of breast cancer malignancy.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Fatores de Troca do Nucleotídeo Guanina/genética , NF-kappa B/genética , Proteína rhoA de Ligação ao GTP/genética , Animais , Neoplasias da Mama/mortalidade , Carcinoma Intraductal não Infiltrante/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos , Camundongos SCID , Transplante de Neoplasias , Prognóstico , Ligação Proteica/genética , Isoformas de Proteínas/genética , Transporte Proteico/genética , Interferência de RNA , Splicing de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , Transdução de Sinais/genética , Transcrição Gênica , Transplante Heterólogo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
9.
Cell Cycle ; 13(6): 941-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552806

RESUMO

Oncogenic mutation or misregulation of small GTPases in the Ras and Rho families can promote unregulated cell cycle progression in cancer. Post-translational modification by prenylation of these GTPases allows them to signal at the cell membrane. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, promote the prenylation and membrane trafficking of multiple Ras and Rho family members, which makes SmgGDS a potentially important regulator of the cell cycle. Surprisingly little is known about how SmgGDS-607 and SmgGDS-558 affect cell cycle-regulatory proteins in cancer, even though SmgGDS is overexpressed in multiple types of cancer. To examine the roles of SmgGDS splice variants in the cell cycle, we compared the effects of the RNAi-mediated depletion of SmgGDS-558 vs. SmgGDS-607 on cell cycle progression and the expression of cyclin D1, p27, and p21 in pancreatic, lung, and breast cancer cell lines. We show for the first time that SmgGDS promotes proliferation of pancreatic cancer cells, and we demonstrate that SmgGDS-558 plays a greater role than SmgGDS-607 in cell cycle progression as well as promoting cyclin D1 and suppressing p27 expression in multiple types of cancer. Silencing both splice variants of SmgGDS in the cancer cell lines produces an alternative signaling profile compared with silencing SmgGDS-558 alone. We also show that loss of both SmgGDS-607 and SmgGDS-558 simultaneously decreases tumorigenesis of NCI-H1703 non-small cell lung carcinoma (NSCLC) xenografts in mice. These findings indicate that SmgGDS promotes cell cycle progression in multiple types of cancer, making SmgGDS a valuable target for cancer therapeutics.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
10.
Sci Signal ; 6(277): ra39, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23716716

RESUMO

During metastasis, cancer cells acquire the ability to dissociate from each other and migrate, which is recapitulated in vitro as cell scattering. The small guanosine triphosphatase (GTPase) Rap1 opposes cell scattering by promoting cell-cell adhesion, a function that requires its prenylation, or posttranslational modification with a carboxyl-terminal isoprenoid moiety, to enable its localization at cell membranes. Thus, signaling cascades that regulate the prenylation of Rap1 offer a mechanism to control the membrane localization of Rap1. We identified a signaling cascade initiated by adenosine A2B receptors that suppressed the prenylation of Rap1B through phosphorylation of Rap1B, which decreased its interaction with the chaperone protein SmgGDS (small GTPase guanosine diphosphate dissociation stimulator). These events promoted the cytosolic and nuclear accumulation of nonprenylated Rap1B and diminished cell-cell adhesion, resulting in cell scattering. We found that nonprenylated Rap1 was more abundant in mammary tumors than in normal mammary tissue in rats and that activation of adenosine receptors delayed Rap1B prenylation in breast, lung, and pancreatic cancer cell lines. Our findings support a model in which high concentrations of extracellular adenosine, such as those that arise in the tumor microenvironment, can chronically activate A2B receptors to suppress Rap1B prenylation and signaling at the cell membrane, resulting in reduced cell-cell contact and promoting cell scattering. Inhibiting A2B receptors may be an effective method to prevent metastasis.


Assuntos
Adenosina/metabolismo , Movimento Celular/fisiologia , Modelos Biológicos , Metástase Neoplásica/fisiopatologia , Transdução de Sinais/fisiologia , Microambiente Tumoral , Proteínas rap de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Microscopia Confocal , Dados de Sequência Molecular , Prenilação , Ratos , Ratos Sprague-Dawley , Receptor A2B de Adenosina/metabolismo , Proteínas rap de Ligação ao GTP/genética
11.
J Biol Chem ; 283(2): 963-76, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17951244

RESUMO

Non-small cell lung carcinoma (NSCLC) is promoted by the increased activities of several small GTPases, including K-Ras4B, Rap1A, Rap1B, RhoC, and Rac1. SmgGDS is an unusual guanine nucleotide exchange factor that activates many of these small GTPases, and thus may promote NSCLC development or progression. We report here that SmgGDS protein levels are elevated in NSCLC tumors, compared with normal lung tissue from the same patients or from individuals without cancer. To characterize SmgGDS functions in NSCLC, we tested the effects of silencing SmgGDS expression by transfecting cultured NSCLC cells with SmgGDS small interfering RNA (siRNA). Cells with silenced SmgGDS expression form fewer colonies in soft agar, do not proliferate in culture due to an arrest in G(1) phase, and exhibit disrupted myosin organization and reduced cell migration. The transcriptional activity of NF-kappaB in NSCLC cells is diminished by transfecting the cells with SmgGDS siRNA, and enhanced by transfecting the cells with a cDNA encoding SmgGDS. Because RhoA is a major substrate for SmgGDS, we investigated whether diminished RhoA expression mimics the effects of diminished SmgGDS expression. Silencing RhoA expression with RhoA siRNA disrupts myosin organization, but only moderately decreases cell proliferation and does not inhibit migration. Our finding that the aggressive NSCLC phenotype is more effectively suppressed by silencing SmgGDS than by silencing RhoA is consistent with the ability of SmgGDS to regulate multiple small GTPases in addition to RhoA. These results demonstrate that SmgGDS promotes the malignant NSCLC phenotype and is an intriguing therapeutic target in NSCLC.


Assuntos
Divisão Celular/fisiologia , Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , NF-kappa B/genética , RNA Interferente Pequeno/genética , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Neoplasias Pulmonares , RNA Neoplásico/genética , Transcrição Gênica , Transfecção , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA