Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 191: 50-62, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703412

RESUMO

Exercise training can promote physiological cardiac growth, which has been suggested to involve changes in glucose metabolism to facilitate hypertrophy of cardiomyocytes. In this study, we used a dietary, in vivo isotope labeling approach to examine how exercise training influences the metabolic fate of carbon derived from dietary glucose in the heart during acute, active, and established phases of exercise-induced cardiac growth. Male and female FVB/NJ mice were subjected to treadmill running for up to 4 weeks and cardiac growth was assessed by gravimetry. Cardiac metabolic responses to exercise were assessed via in vivo tracing of [13C6]-glucose via mass spectrometry and nuclear magnetic resonance. We found that the half-maximal cardiac growth response was achieved by approximately 1 week of daily exercise training, with near maximal growth observed in male mice with 2 weeks of training; however, female mice were recalcitrant to exercise-induced cardiac growth and required a higher daily intensity of exercise training to achieve significant, albeit modest, increases in cardiac mass. We also found that increases in the energy charge of adenylate and guanylate nucleotide pools precede exercise-induced changes in cardiac size and were associated with higher glucose tracer enrichment in the TCA pool and in amino acids (aspartate, glutamate) sourced by TCA intermediates. Our data also indicate that the activity of collateral biosynthetic pathways of glucose metabolism may not be markedly altered by exercise. Overall, this study provides evidence that metabolic remodeling in the form of heightened energy charge and increased TCA cycle activity and cataplerosis precedes cardiac growth caused by exercise training in male mice.


Assuntos
Glucose , Coração , Miocárdio , Condicionamento Físico Animal , Animais , Masculino , Feminino , Glucose/metabolismo , Miocárdio/metabolismo , Camundongos , Coração/crescimento & desenvolvimento , Metabolismo Energético
2.
Environ Res ; 245: 117991, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141921

RESUMO

Exposure to plants is known to improve physical and mental health and living in areas of high vegetation is associated with better health. The addition of quantitative measures of greenness exposure at individual-level to other objective and subjective study measures will help establish cause-and-effect relationships between greenspaces and human health. Because limonene is one of the most abundant biogenic volatile organic compounds emitted by plants, we hypothesized that urinary metabolites of inhaled limonene can serve as biomarkers of exposure to greenness. To test our hypothesis, we analyzed urine samples collected from eight human volunteers after limonene inhalation or after greenness exposure using liquid chromatography-high resolution mass spectrometry-based profiling. Eighteen isomers of nine metabolites were detected in urine after limonene inhalation, and their kinetic parameters were estimated using nonlinear mixed effect models. Urinary levels of most abundant limonene metabolites were elevated after brief exposure to a forested area, and the ratio of urinary limonene metabolites provided evidence of recent exposure. The identities and structures of these metabolites were validated using stable isotope tracing and tandem mass spectral comparison. Together, these data suggest that urinary metabolites of limonene, especially uroterpenol glucuronide and dihydroperillic acid glucuronide, could be used as individualized biomarkers of greenness exposure.


Assuntos
Glucuronídeos , Plantas , Humanos , Limoneno , Glucuronídeos/urina , Espectrometria de Massa com Cromatografia Líquida , Biomarcadores/urina
3.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35061545

RESUMO

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Ciclo Celular , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Ratos , Volume Sistólico , Suínos , Função Ventricular Esquerda
4.
Environ Sci Technol ; 57(29): 10563-10573, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432892

RESUMO

Urinary mercapturic acids (MAs) are often used as biomarkers for monitoring human exposures to occupational and environmental xenobiotics. In this study, we developed an integrated library-guided analysis workflow using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. This method includes expanded assignment criteria and a curated library of 220 MAs and addresses the shortcomings of previous untargeted approaches. We employed this workflow to profile MAs in the urine of 70 participants─40 nonsmokers and 30 smokers. We found approximately 500 MA candidates in each urine sample, and 116 MAs from 63 precursors were putatively annotated. These include 25 previously unreported MAs derived mostly from alkenals and hydroxyalkenals. Levels of 68 MAs were comparable in nonsmokers and smokers, 2 MAs were higher in nonsmokers, and 46 MAs were elevated in smokers. These included MAs of polycyclic aromatic hydrocarbons and hydroxyalkenals and those derived from toxicants present in cigarette smoke (e.g., acrolein, 1,3-butadiene, isoprene, acrylamide, benzene, and toluene). Our workflow allowed profiling of known and unreported MAs from endogenous and environmental sources, and the levels of several MAs were increased in smokers. Our method can also be expanded and applied to other exposure-wide association studies.


Assuntos
Acetilcisteína , Espectrometria de Massas em Tandem , Humanos , Acetilcisteína/urina , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Acroleína , Biomarcadores
5.
J Mol Cell Cardiol ; 162: 32-42, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487754

RESUMO

Glucose metabolism comprises numerous amphibolic metabolites that provide precursors for not only the synthesis of cellular building blocks but also for ATP production. In this study, we tested how phosphofructokinase-1 (PFK1) activity controls the fate of glucose-derived carbon in murine hearts in vivo. PFK1 activity was regulated by cardiac-specific overexpression of kinase- or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgenes in mice (termed GlycoLo or GlycoHi mice, respectively). Dietary delivery of 13C6-glucose to these mice, followed by deep network metabolic tracing, revealed that low rates of PFK1 activity promote selective routing of glucose-derived carbon to the purine synthesis pathway to form 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Consistent with a mechanism of physical channeling, we found multimeric protein complexes that contained phosphoribosylaminoimidazole carboxylase (PAICS)-an enzyme important for AICAR biosynthesis, as well as chaperone proteins such as Hsp90 and other metabolic enzymes. We also observed that PFK1 influenced glucose-derived carbon deposition in glycogen, but did not affect hexosamine biosynthetic pathway activity. These studies demonstrate the utility of deep network tracing to identify metabolic channeling and changes in biosynthetic pathway activity in the heart in vivo and present new potential mechanisms by which metabolic branchpoint reactions modulate biosynthetic pathways.


Assuntos
Vias Biossintéticas , Fosfofrutoquinase-2 , Animais , Glucose/metabolismo , Glicólise , Camundongos , Miocárdio/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinases/metabolismo
6.
J Mol Cell Cardiol ; 172: 78-89, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988357

RESUMO

BACKGROUND: Fibrosis and extracellular matrix remodeling are mediated by resident cardiac fibroblasts (CFs). In response to injury, fibroblasts activate, differentiating into specialized synthetic and contractile myofibroblasts producing copious extracellular matrix proteins (e.g., collagens). Myofibroblast persistence in chronic diseases, such as HF, leads to progressive cardiac dysfunction and maladaptive remodeling. We recently reported that an increase in αKG (alpha-ketoglutarate) bioavailability, which contributes to enhanced αKG-dependent lysine demethylase activity and chromatin remodeling, is required for myofibroblast formation. Therefore, we aimed to determine the substrates and metabolic pathways contributing to αKG biosynthesis and their requirement for myofibroblast formation. METHODS: Stable isotope metabolomics identified glutaminolysis as a key metabolic pathway required for αKG biosynthesis and myofibroblast formation, therefore we tested the effects of pharmacologic inhibition (CB-839) or genetic deletion of glutaminase (Gls1-/-) on myofibroblast formation in both murine and human cardiac fibroblasts. We employed immunofluorescence staining, functional gel contraction, western blotting, and bioenergetic assays to determine the myofibroblast phenotype. RESULTS: Carbon tracing indicated enhanced glutaminolysis mediating increased αKG abundance. Pharmacological and genetic inhibition of glutaminolysis prevented myofibroblast formation indicated by a reduction in αSMA+ cells, collagen gel contraction, collagen abundance, and the bioenergetic response. Inhibition of glutaminolysis also prevented TGFß-mediated histone demethylation and supplementation with cell-permeable αKG rescued the myofibroblast phenotype. Importantly, inhibition of glutaminolysis was sufficient to prevent myofibroblast formation in CFs isolated from the human failing heart. CONCLUSIONS: These results define glutaminolysis as necessary for myofibroblast formation and persistence, providing substantial rationale to evaluate several new therapeutic targets to treat cardiac fibrosis.


Assuntos
Miofibroblastos , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Glutamina/metabolismo , Fibroblastos/metabolismo , Colágeno/metabolismo , Células Cultivadas
7.
Am J Physiol Heart Circ Physiol ; 323(1): H146-H164, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622533

RESUMO

The goal of this study was to develop an atlas of the metabolic, transcriptional, and proteomic changes that occur with pregnancy in the maternal heart. Timed pregnancy studies in FVB/NJ mice revealed a significant increase in heart size by day 8 of pregnancy (midpregnancy; MP), which was sustained throughout the rest of the term compared with nonpregnant control mice. Cardiac hypertrophy and myocyte cross-sectional area were highest 7 days after birth (postbirth; PB) and were associated with significant increases in end-diastolic and end-systolic left ventricular volumes and higher cardiac output. Metabolomics analyses revealed that by day 16 of pregnancy (late pregnancy; LP) metabolites associated with nitric oxide production as well as acylcholines, sphingomyelins, and fatty acid species were elevated, which coincided with a lower activation state of phosphofructokinase and higher levels of pyruvate dehydrogenase kinase 4 (Pdk4) and ß-hydroxybutyrate dehydrogenase 1 (Bdh1). In the postpartum period, urea cycle metabolites, polyamines, and phospholipid levels were markedly elevated in the maternal heart. Cardiac transcriptomics in LP revealed significant increases in not only Pdk4 and Bdh1 but also genes that regulate glutamate and ketone body oxidation, which were preceded in MP by higher expression of transcripts controlling cell proliferation and angiogenesis. Proteomics analysis of the maternal heart in LP and PB revealed significant reductions in several contractile filament and mitochondrial subunit complex proteins. Collectively, these findings describe the coordinated molecular changes that occur in the maternal heart during and after pregnancy.NEW & NOTEWORTHY Little is known of the underlying molecular and cellular mechanisms that contribute to pregnancy-induced cardiac growth. Several lines of evidence suggest that changes in cardiac metabolism may contribute. Here, we provide a comprehensive metabolic atlas of the metabolomic, proteomic, and transcriptomic changes occurring in the maternal heart. We show that pregnancy-induced cardiac growth is associated with changes in glycerophospholipid, nucleotide, and amino acid metabolism, with reductions in cardiac glucose catabolism. Collectively, these results suggest that substantial metabolic changes occur in the maternal heart during and after pregnancy.


Assuntos
Coração , Proteômica , Animais , Cardiomegalia/metabolismo , Feminino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Oxirredução , Gravidez
8.
Chem Res Toxicol ; 35(2): 283-292, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044764

RESUMO

Despite the increasing popularity of e-cigarettes, their long-term health effects remain unknown. In animal models, exposure to e-cigarette has been reported to result in pulmonary and cardiovascular injury, and in humans, the acute use of e-cigarettes increases heart rate and blood pressure and induces endothelial dysfunction. In both animal models and humans, cardiovascular dysfunction associated with e-cigarettes has been linked to reactive aldehydes such as formaldehyde and acrolein generated in e-cigarette aerosols. These aldehydes are known products of heating and degradation of vegetable glycerin (VG) present in e-liquids. Here, we report that in mice, acute exposure to a mixture of propylene glycol:vegetable glycerin (PG:VG) or to e-cigarette-derived aerosols significantly increased the urinary excretion of acrolein and glycidol metabolites─3-hydroxypropylmercapturic acid (3HPMA) and 2,3-dihydroxypropylmercapturic acid (23HPMA)─as measured by UPLC-MS/MS. In humans, the use of e-cigarettes led to an increase in the urinary levels of 23HPMA but not 3HPMA. Acute exposure of mice to aerosols derived from PG:13C3-VG significantly increased the 13C3 enrichment of both urinary metabolites 13C3-3HPMA and 13C3-23HPMA. Our stable isotope tracing experiments provide further evidence that thermal decomposition of vegetable glycerin in the e-cigarette solvent leads to generation of acrolein and glycidol. This suggests that the adverse health effects of e-cigarettes may be attributable in part to these reactive compounds formed through the process of aerosolizing nicotine. Our findings also support the notion that 23HPMA, but not 3HPMA, may be a relatively specific biomarker of e-cigarette use.


Assuntos
Acroleína/química , Sistemas Eletrônicos de Liberação de Nicotina , Compostos de Epóxi/química , Aromatizantes/química , Propanóis/química , Acroleína/metabolismo , Acroleína/urina , Aerossóis/química , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Compostos de Epóxi/metabolismo , Compostos de Epóxi/urina , Aromatizantes/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Propanóis/metabolismo , Propanóis/urina , Solventes , Vaping
9.
Am J Physiol Heart Circ Physiol ; 320(4): H1510-H1525, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543686

RESUMO

After more than a decade of electronic cigarette (E-cig) use in the United States, uncertainty persists regarding E-cig use and long-term cardiopulmonary disease risk. As all E-cigs use propylene glycol and vegetable glycerin (PG-VG) and generate abundant saturated aldehydes, mice were exposed by inhalation to PG-VG-derived aerosol, formaldehyde (FA), acetaldehyde (AA), or filtered air. Biomarkers of exposure and cardiopulmonary injury were monitored by mass spectrometry (urine metabolites), radiotelemetry (respiratory reflexes), isometric myography (aorta), and flow cytometry (blood markers). Acute PG-VG exposure significantly affected multiple biomarkers including pulmonary reflex (decreased respiratory rate, -50%), endothelium-dependent relaxation (-61.8 ± 4.2%), decreased WBC (-47 ± 7%), and, increased RBC (+6 ± 1%) and hemoglobin (+4 ± 1%) versus air control group. Notably, FA exposure recapitulated the prominent effects of PG-VG aerosol on pulmonary irritant reflex and endothelial dysfunction, whereas AA exposure did not. To attempt to link PG-VG exposure with FA or AA exposure, urinary formate and acetate levels were measured by GC-MS. Although neither FA nor AA exposure altered excretion of their primary metabolite, formate or acetate, respectively, compared with air-exposed controls, PG-VG aerosol exposure significantly increased post-exposure urinary acetate but not formate. These data suggest that E-cig use may increase cardiopulmonary disease risk independent of the presence of nicotine and/or flavorings. This study indicates that FA levels in tobacco product-derived aerosols should be regulated to levels that do not induce biomarkers of cardiopulmonary harm. There remains a need for reliable biomarkers of exposure to inhaled FA and AA.NEW & NOTEWORTHY Use of electronic cigarettes (E-cig) induces endothelial dysfunction (ED) in healthy humans, yet the specific constituents in E-cig aerosols that contribute to ED are unknown. Our study implicates formaldehyde that is formed in heating of E-cig solvents (propylene glycol, PG; vegetable glycerin, VG). Exposure to formaldehyde or PG-VG-derived aerosol alone stimulated ED in female mice. As ED was independent of nicotine and flavorants, these data reflect a "universal flaw" of E-cigs that use PG-VG.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/e-cigarettes-aldehydes-and-endothelial-dysfunction/.


Assuntos
Acetaldeído/toxicidade , Aorta Torácica/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Endotélio Vascular/efeitos dos fármacos , Formaldeído/toxicidade , Glicerol/toxicidade , Pulmão/efeitos dos fármacos , Propilenoglicol/toxicidade , Solventes/toxicidade , Acetaldeído/urina , Aerossóis , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Vapor do Cigarro Eletrônico/urina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Formaldeído/urina , Exposição por Inalação , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Respiração/efeitos dos fármacos , Medição de Risco , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
10.
Environ Res ; 196: 110903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636185

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Exposure to air pollution, specifically particulate matter of diameter ≤2.5 µm (PM2.5), is a well-established risk factor for CVD. However, the contribution of gaseous pollutant exposure to CVD risk is less clear. OBJECTIVE: To examine the vascular effects of exposure to individual volatile organic compounds (VOCs) and mixtures of VOCs. METHODS: We measured urinary metabolites of acrolein (CEMA and 3HPMA), 1,3-butadiene (DHBMA and MHBMA3), and crotonaldehyde (HPMMA) in 346 nonsmokers with varying levels of CVD risk. On the day of enrollment, we measured blood pressure (BP), reactive hyperemia index (RHI - a measure of endothelial function), and urinary levels of catecholamines and their metabolites. We used generalized linear models for evaluating the association between individual VOC metabolites and BP, RHI, and catecholamines, and we used Bayesian Kernel Machine Regression (BKMR) to assess exposure to VOC metabolite mixtures and BP. RESULTS: We found that the levels of 3HPMA were positively associated with systolic BP (0.98 mmHg per interquartile range (IQR) of 3HPMA; CI: 0.06, 1.91; P = 0.04). Stratified analysis revealed an increased association with systolic BP in Black participants despite lower levels of urinary 3HPMA. This association was independent of PM2.5 exposure and BP medications. BKMR analysis confirmed that 3HPMA was the major metabolite associated with higher BP in the presence of other metabolites. We also found that 3HPMA and DHBMA were associated with decreased endothelial function. For each IQR of 3HPMA or DHBMA, there was a -4.4% (CI: -7.2, -0.0; P = 0.03) and a -3.9% (CI: -9.4, -0.0; P = 0.04) difference in RHI, respectively. Although in the entire cohort the levels of several urinary VOC metabolites were weakly associated with urinary catecholamines and their metabolites, in Black participants, DHBMA levels showed strong associations with urinary norepinephrine and normetanephrine levels. DISCUSSION: Exposure to acrolein and 1,3-butadiene is associated with endothelial dysfunction and may contribute to elevated risk of hypertension in participants with increased sympathetic tone, particularly in Black individuals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Acroleína , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Aldeídos , Teorema de Bayes , Butadienos , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade
11.
Toxicol Appl Pharmacol ; 402: 115120, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634517

RESUMO

Although crotonaldehyde (CR) is an abundant α,ß-unsaturated aldehyde in mainstream cigarette smoke (MCS), the cardiovascular toxicity of inhaled CR is largely unexplored. Thus, male C57BL/6 J mice were exposed acutely (1 h, 6 h, and 4d) and chronically (12 weeks) to CR (at levels relevant to MCS; 1 and 3 ppm), and cardiovascular and systemic outcomes were measured in vivo and in vitro. Diastolic blood pressure was decreased (hypotension) by both acute and chronic CR exposure. Vascular toxicity of inhaled CR was quantified in isolated aorta in response to agonists of contraction (phenylephrine, PE) and relaxation (acetylcholine, ACh; sodium nitroprusside, SNP). Although no change in contractility was observed, ACh-induced relaxations were augmented after both acute and chronic CR exposures whereas SNP-induced relaxation was enhanced only following 3 ppm CR exposure. Because CR is a known agonist of the transient receptor potential ankyrin 1 (TRPA1) channel, male TRPA1-null mice were exposed to air or CR (4d, 1 ppm) and aortic function assessed in vitro. CR exposure had no effect on TRPA1-null aortic function indicating a role of TRPA1 in CR effects in C57BL/6 J mice. Notably, CR exposure (4d, 1 ppm) had no effect on aortic function in female C57BL/6 J mice. This study shows that CR inhalation exposure induces real-time and persistent vascular changes that promote hypotension-a known risk factor for stroke. Because of continued widespread exposures of humans to combustion-derived CR (environmental and tobacco products), CR may be an important cardiovascular disease risk factor.


Assuntos
Aldeídos/toxicidade , Canal de Cátion TRPA1/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Acetilcisteína/urina , Aldeídos/metabolismo , Animais , Aorta/efeitos dos fármacos , Esquema de Medicação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1/genética , Vasoconstrição/efeitos dos fármacos
12.
Cancer Cell Int ; 20: 280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32624705

RESUMO

BACKGROUND: Aberrant activity of cell cycle proteins is one of the key somatic events in non-small cell lung cancer (NSCLC) pathogenesis. In most NSCLC cases, the retinoblastoma protein tumor suppressor (RB) becomes inactivated via constitutive phosphorylation by cyclin dependent kinase (CDK) 4/6, leading to uncontrolled cell proliferation. Palbociclib, a small molecule inhibitor of CDK4/6, has shown anti-tumor activity in vitro and in vivo, with recent studies demonstrating a functional role for palbociclib in reprogramming cellular metabolism. While palbociclib has shown efficacy in preclinical models of NSCLC, the metabolic consequences of CDK4/6 inhibition in this context are largely unknown. METHODS: In our study, we used a combination of stable isotope resolved metabolomics using [U-13C]-glucose and multiple in vitro metabolic assays, to interrogate the metabolic perturbations induced by palbociclib in A549 lung adenocarcinoma cells. Specifically, we assessed changes in glycolytic activity, the pentose phosphate pathway (PPP), and glutamine utilization. We performed these studies following palbociclib treatment with simultaneous silencing of RB1 to define the pRB-dependent changes in metabolism. RESULTS: Our studies revealed palbociclib does not affect glycolytic activity in A549 cells but decreases glucose metabolism through the PPP. This is in part via reducing activity of glucose 6-phosphate dehydrogenase, the rate limiting enzyme in the PPP. Additionally, palbociclib enhances glutaminolysis to maintain mitochondrial respiration and sensitizes A549 cells to the glutaminase inhibitor, CB-839. Notably, the effects of palbociclib on both the PPP and glutamine utilization occur in an RB-dependent manner. CONCLUSIONS: Together, our data define the metabolic impact of palbociclib treatment in A549 cells and may support the targeting CDK4/6 inhibition in combination with glutaminase inhibitors in NSCLC patients with RB-proficient tumors.

13.
Nicotine Tob Res ; 22(2): 264-272, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30759242

RESUMO

INTRODUCTION: Limited research exists about the possible cardiovascular effects of electronic nicotine delivery systems (ENDS). We therefore sought to compare exposure to known or potentially cardiotoxic volatile organic compounds (VOCs) in ENDS users, smokers, and dual users. METHODS: A total of 371 individuals from the Cardiovascular Injury due to Tobacco Use study, a cross-sectional study of healthy participants aged 21-45 years, were categorized as nonusers of tobacco (n = 87), sole ENDS users (n = 17), cigarette smokers (n = 237), and dual users (n = 30) based on 30-day self-reported tobacco product use patterns. Participants provided urine samples for VOC and nicotine metabolite measurement. We assessed associations between tobacco product use and VOC metabolite measures using multivariable-adjusted linear regression models. RESULTS: Mean (SD) age of the population was 32 (±6.8) years, 55% men. Mean urinary cotinine level in nonusers of tobacco was 2.6 ng/mg creatinine, whereas cotinine levels were similar across all tobacco product use categories (851.6-910.9 ng/mg creatinine). In multivariable-adjusted models, sole ENDS users had higher levels of metabolites of acrolein, acrylamide, acrylonitrile, and xylene compared with nonusers of tobacco, but lower levels of most VOC metabolites compared with cigarette smokers or dual users. In direct comparison of cigarettes smokers and dual users, we found lower levels of metabolites of styrene and xylene in dual users. CONCLUSION: Although sole ENDS use may be associated with lower VOC exposure compared to cigarette smoking, further study is required to determine the potential health effects of the higher levels of certain reactive aldehydes, including acrolein, in ENDS users compared with nonusers of tobacco. IMPLICATIONS: ENDS use in conjunction with other tobacco products may not significantly reduce exposure to VOC, but sole use does generally reduce some VOC exposure and warrants more in-depth studies.


Assuntos
Fumar Cigarros/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , não Fumantes , Fumantes , Vaping/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Adulto , Biomarcadores/metabolismo , Biomarcadores/urina , Fumar Cigarros/urina , Estudos de Coortes , Cotinina/metabolismo , Cotinina/urina , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/metabolismo , Nicotina/urina , Vaping/urina , Adulto Jovem
14.
Part Fibre Toxicol ; 17(1): 7, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996220

RESUMO

BACKGROUND: Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.1 µm aerodynamic diameter) may bear toxicity unique from larger particles. Toxicological studies suggest that PM impairs left ventricular (LV) performance; however, such investigations have heretofore required animal restraint, anesthesia, or ex vivo preparations that can confound physiologic endpoints and/or prohibit LV mechanical assessments during exposure. To assess the acute and chronic effects of PEPs on cardiac physiology, male Sprague Dawley rats were exposed to PEPs (21 days, 5 h/day) while monitoring LV pressure (LVP) and electrocardiogram (ECG) via conscious telemetry, analyzing LVP and heart rate variability (HRV) in four-day increments from exposure days 1 to 21, as well as ECG and baroreflex sensitivity. At 2, 35, and 70 days after PEPs exposure ceased, rats received stress tests. RESULTS: On day 21 of exposure, PEPs significantly (P < 0.05 vs. Air) increased LV end systolic pressure (LVESP, + 18 mmHg) and rate-pressure-product (+ 19%), and decreased HRV indicating sympathetic dominance (root means squared of successive differences [RMSSD], - 21%). Overall, PEPs decreased LV ejection time (- 9%), relaxation time (- 3%), tau (- 5%), RMSSD (- 21%), and P-wave duration (- 9%). PEPs increased QTc interval (+ 5%) and low:high frequency HRV (+ 24%; all P < 0.05 vs. Air), while tending to decrease baroreflex sensitivity and contractility index (- 15% and - 3%, P < 0.10 vs. Air). Relative to Air, at both 2 and 35 days after PEPs, ventricular arrhythmias increased, and at 70 days post-exposure LVESP increased. PEPs impaired ventricular repolarization at 2 and 35 days post-exposure, but only during stress tests. At 72 days post-exposure, PEPs increased urinary dopamine 5-fold and protein expression of ventricular repolarizing channels, Kv1.5, Kv4.2, and Kv7.1, by 50%. CONCLUSIONS: Our findings suggest exposure to PEPs increases cardiovascular risk by augmenting sympathetic influence, impairing ventricular performance and repolarization, and inducing hypertension and arrhythmia. PEPs may present significant health risks through adverse cardiovascular effects, especially in occupational settings, among susceptible individuals, and with long-term exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Sistema de Condução Cardíaco/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Sistema Nervoso Simpático/efeitos dos fármacos , Aerossóis , Animais , Arritmias Cardíacas/sangue , Arritmias Cardíacas/urina , Eletrocardiografia/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Impressão , Ratos Sprague-Dawley , Pressão Ventricular/efeitos dos fármacos
15.
Inhal Toxicol ; 32(13-14): 468-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33179563

RESUMO

OBJECTIVE: The inhalation of air-borne toxicants is associated with adverse health outcomes which can be somewhat mitigated by enhancing endogenous anti-oxidant capacity. Carnosine is a naturally occurring dipeptide (ß-alanine-L-histidine), present in high abundance in skeletal and cardiac muscle. This multi-functional dipeptide has anti-oxidant properties, can buffer intracellular pH, chelate metals, and sequester aldehydes such as acrolein. Due to these chemical properties, carnosine may be protective against inhaled pollutants which can contain metals and aldehydes and can stimulate the generation of electrophiles in exposed tissues. Thus, assessment of carnosine levels, or levels of its acrolein conjugates (carnosine-propanal and carnosine-propanol) may inform on level of exposure and risk assessment. METHODS: We used established mass spectroscopy methods to measure levels of urinary carnosine (n = 605) and its conjugates with acrolein (n = 561) in a subset of participants in the Louisville Healthy Heart Study (mean age = 51 ± 10; 52% male). We then determined associations between these measures and air pollution exposure and smoking behavior using statistical modeling approaches. RESULTS: We found that higher levels of non-conjugated carnosine, carnosine-propanal, and carnosine-propanol were significantly associated with males (p < 0.02) and those of Caucasian ethnicity (p < 0.02). Levels of carnosine-propanol were significantly higher in never-smokers (p = 0.001) but lower in current smokers (p = 0.037). This conjugate also demonstrated a negative association with mean-daily particulate air pollution (PM2.5) levels (p = 0.01). CONCLUSIONS: These findings suggest that urinary levels of carnosine-propanol may inform as to risk from inhaled pollutants.


Assuntos
Aldeídos/urina , Carnosina/urina , Exposição por Inalação , Fumar/urina , 1-Propanol/urina , Adulto , Poluentes Atmosféricos/farmacocinética , Aldeídos/farmacocinética , Monitoramento Biológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/metabolismo
16.
Nicotine Tob Res ; 21(9): 1228-1238, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-29868926

RESUMO

BACKGROUND: Cigarette smoking is associated with an increase in cardiovascular disease risk, attributable in part to reactive volatile organic chemicals (VOCs). However, little is known about the extent of VOC exposure due to the use of other tobacco products. METHODS: We recruited 48 healthy, tobacco users in four groups: cigarette, smokeless tobacco, occasional users of first generation e-cigarette and e-cigarette menthol and 12 healthy nontobacco users. After abstaining for 48 h, tobacco users used an assigned product. Urine was collected at baseline followed by five collections over a 3-h period to measure urinary metabolites of VOCs, nicotine, and tobacco alkaloids. RESULTS: Urinary levels of nicotine were ≃2-fold lower in occasional e-cigarette and smokeless tobacco users than in the cigarette smokers; cotinine and 3-hydroxycotinine levels were similar in all groups. Compared with nontobacco users, e-cigarette users had higher levels of urinary metabolites of xylene, cyanide, styrene, ethylbenzene, and benzene at baseline and elevated urinary levels of metabolites of xylene, N,N-dimethylformamide, and acrylonitrile after e-cigarette use. Metabolites of acrolein, crotonaldehyde, and 1,3-butadiene were significantly higher in smokers than in users of other products or nontobacco users. VOC metabolite levels in smokeless tobacco group were comparable to those found in nonusers with the exception of xylene metabolite-2-methylhippuric acid (2MHA), which was almost three fold higher than in nontobacco users. CONCLUSIONS: Smoking results in exposure to a range of VOCs at concentrations higher than those observed with other products, and first generation e-cigarette use is associated with elevated levels of N,N-dimethylformamide and xylene metabolites. IMPLICATIONS: This study shows that occasional users of first generation e-cigarettes have lower levels of nicotine exposure than the users of combustible cigarettes. Compared with combustible cigarettes, e-cigarettes, and smokeless tobacco products deliver lower levels of most VOCs, with the exception of xylene, N,N-dimethylformamide, and acrylonitrile, whose metabolite levels were higher in the urine of e-cigarette users than nontobacco users. Absence of anatabine in the urine of e-cigarette users suggests that measuring urinary levels of this alkaloid may be useful in distinguishing between users of e-cigarettes and combustible cigarettes. However, these results have to be validated in a larger cohortcomprised of users of e-cigarettes of multiple brands.


Assuntos
Fumar Cigarros/urina , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/urina , Produtos do Tabaco/análise , Uso de Tabaco/urina , Vaping/urina , Adulto , Biomarcadores/urina , Fumar Cigarros/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Uso de Tabaco/epidemiologia , Tabaco sem Fumaça/análise , Vaping/epidemiologia , Compostos Orgânicos Voláteis/urina , Adulto Jovem
17.
Nicotine Tob Res ; 21(6): 846-849, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29059414

RESUMO

INTRODUCTION: Metabolism of nicotine has implications for addiction and may be altered in people with type 2 diabetes. Thus, our objective was to analyze nicotine metabolism in adults with and without type 2 diabetes who smoke. METHODS: From an existing cross-sectional study, we analyzed nicotine metabolism in urine of 148 smokers, 36 type 2 diabetics (insulin or antidiabetic medication use and/or fasting glucose >126 mg/dL) and 112 non-diabetics. Nicotine metabolism was quantified as the nicotine metabolite ratio (NMR) = trans-3'-hydroxycotinine (3HC) divided by cotinine (COT). COT and 3HC were measured in the participant urine by ultra-performance liquid chromatography-tandem mass spectrometry. Generalized linear models were used to assess whether NMR was associated with diabetic status (yes/no). RESULTS: Participants categorized as high NMR smoked more cigarettes per day (p = .002) and were more likely to be diabetic (p = .022) compared to low NMR. We found no significant difference in total nicotine equivalents defined as the sum of the nicotine, COT, and 3HC (p > .05). In unadjusted models, NMR was 42.5% higher in diabetics versus non-diabetics (95% confidence interval [CI]: 12.9, 79.8; p = .003). In models adjusted for factors significantly different between low versus high NMR participants, mean NMR was 36.5% higher in the diabetics versus non-diabetics (95% CI: 7.8, 72.8; p = .010). Additionally, in models adjusted for known confounders of NMR, NMR was 40.6% higher in diabetics versus non-diabetics (95% CI: 9.9, 80.0; p = .007). CONCLUSIONS: From these data, we infer that type 2 diabetics metabolize nicotine faster, which may increase the potential for nicotine addiction. IMPLICATIONS: Smoking is addictive and this addiction may be related to tobacco metabolism. Individuals with faster metabolism of nicotine tend to smoke more cigarettes for longer periods of time. People with type 2 diabetes may metabolize nicotine faster, which could lead to higher lifetime tobacco burden, increasing the adverse health outcomes associated with increased exposure to tobacco.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Nicotina/metabolismo , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/análise , Prognóstico
18.
Nicotine Tob Res ; 21(1): 101-110, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085294

RESUMO

Introduction: Smokeless tobacco products such as snuff and snus are used worldwide. However, little is known about the systemic and cardiovascular toxicity of smokeless tobacco exposure. Methods: Biomarkers of endothelial activation and injury, immune functions, platelet activation and insulin resistance were measured in 8-week old male C57BL/6 mice exposed to commercial snuff, CRP-2 reference snuff, commercial snus, CRP-1 reference snus, and nicotine in drinking water (100 µg/mL) for 4, 12, and 24 weeks. Results: Twenty-four weeks of exposure to smokeless tobacco products or nicotine significantly decreased the levels of circulating Flk+/Sca+ endothelial progenitor cells. Twelve and 24 weeks of exposure to all the smokeless tobacco products and nicotine significantly decreased the levels of circulating CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD11b+ monocytes, whereas 4 weeks of exposure to Camel snus and Copenhagen snuff significantly depleted the levels of peripheral blood CD19+ B cells and CD11b+ monocytes. Twenty-four weeks of exposure to smokeless tobacco products or nicotine significantly decreased plasma IFNγ levels. However, plasma TNFα levels were significantly increased in mice exposed to Copenhagen snuff or nicotine for 24 weeks. This was accompanied by a five to sevenfold increase in the hepatic expression of TNFα. Neither smokeless products nor nicotine affected plasma lipoproteins, platelet activation, or systemic insulin sensitivity. Conclusions: Chronic exposure to snuff and snus suppresses circulating levels of EPCs, endothelial microparticles and immune cells, but increases plasma TNF-α levels. These effects of smokeless tobacco products are attributable, at least in part, to nicotine. Implications: Exposure to smokeless tobacco products results in the depletion of endothelial progenitor cells, which may impair the endothelium repair. Suppression of the circulating levels of immune cells upon exposure to smokeless tobacco products may increase the susceptibility to secondary infection. Increased formation of proinflammatory cytokines such as TNFα by nicotine or Copenhagen snuff may lead to vascular inflammation and thereby exacerbate atherogenesis.


Assuntos
Biomarcadores/análise , Endotélio Vascular/patologia , Imunidade Celular/efeitos dos fármacos , Resistência à Insulina , Ativação Plaquetária/efeitos dos fármacos , Trombose/patologia , Tabaco sem Fumaça/toxicidade , Animais , Endotélio Vascular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trombose/induzido quimicamente
20.
Basic Res Cardiol ; 113(6): 46, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353243

RESUMO

Although cell therapy improves cardiac function after myocardial infarction, highly variable results and limited understanding of the underlying mechanisms preclude its clinical translation. Because many heart failure patients are diabetic, we examined how diabetic conditions affect the characteristics of cardiac mesenchymal cells (CMC) and their ability to promote myocardial repair in mice. To examine how diabetes affects CMC function, we isolated CMCs from non-diabetic C57BL/6J (CMCWT) or diabetic B6.BKS(D)-Leprdb/J (CMCdb/db) mice. When CMCs were grown in 17.5 mM glucose, CMCdb/db cells showed > twofold higher glycolytic activity and a threefold higher expression of Pfkfb3 compared with CMCWT cells; however, culture of CMCdb/db cells in 5.5 mM glucose led to metabolic remodeling characterized by normalization of metabolism, a higher NAD+/NADH ratio, and a sixfold upregulation of Sirt1. These changes were associated with altered extracellular vesicle miRNA content as well as proliferation and cytotoxicity parameters comparable to CMCWT cells. To test whether this metabolic improvement of CMCdb/db cells renders them suitable for cell therapy, we cultured CMCWT or CMCdb/db cells in 5.5 mM glucose and then injected them into infarcted hearts of non-diabetic mice (CMCWT, n = 17; CMCdb/db, n = 13; Veh, n = 14). Hemodynamic measurements performed 35 days after transplantation showed that, despite normalization of their properties in vitro, and unlike CMCWT cells, CMCdb/db cells did not improve load-dependent and -independent parameters of left ventricular function. These results suggest that diabetes adversely affects the reparative capacity of CMCs and that modulating CMC characteristics via culture in lower glucose does not render them efficacious for cell therapy.


Assuntos
Diabetes Mellitus Experimental , Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio , Miocárdio , Animais , Feminino , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA