Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecotoxicol Environ Saf ; 236: 113454, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367887

RESUMO

Microcystin-leucine arginine (MC-LR), an emerging water pollutant, produced by cyanobacteria, has an acute testicular toxicity. However, little is known about the chronic toxic effects of MC-LR exposure on the testis at environmental concentrations and the underlying molecular mechanisms. In this study, C57BL/6 J mice were exposed to different low concentrations of MC-LR for 6, 9 and 12 months. The results showed that MC-LR could cause testis structure loss, cell abscission and blood-testis barrier (BTB) damage. Long-term exposure of MC-LR also activated RhoA/ROCK pathway, which was accompanied by the rearrangement of α-Tubulin. Furthermore, MC-LR reduced the levels of the adherens junction proteins (N-cadherin and ß-catenin) and the tight junction proteins (ZO-1 and Occludin) in a dose- and time-dependent way, causing BTB damage. MC-LR also reduced the expressions of Occludin, ZO-1, ß-catenin, and N-cadherin in TM4 cells, accompanied by a disruption of cytoskeletal proteins. More importantly, the RhoA inhibitor Rhosin ameliorated these MC-LR-induced changes. Together, these new findings suggest that long-term exposure to MC-LR induces BTB damage through RhoA/ROCK activation: involvement of tight junction and adherens junction changes and cytoskeleton disruption. This study highlights a new mechanism for MC-LR-induced BTB disruption and provides new insights into the cause and treatment of BTB disruption.


Assuntos
Barreira Hematotesticular , beta Catenina , Animais , Caderinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcistinas/toxicidade , Ocludina/metabolismo
2.
Ecotoxicol Environ Saf ; 227: 112919, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34715501

RESUMO

Microcystin-LR (MC-LR) is an intracellular toxin with multi-organ toxicity and the testis is one of its important target organs. Although there is increasing research on MC-LR in male reproductive toxicity, the association between DNA damage and autophagy induced by MC-LR in male germ cells are still unclear. Therefore, it is important to explore the mechanism of MC-LR-induced DNA damage and the role of the activated ATM/p53 signaling pathway in testicular toxicity. The present study showed that MC-LR exposure significantly reduced gonadal index and induced pathological damage of the testes in mice. In addition, MC-LR increased the oxidative stress-related indicator hydroxyl radical, accompanied by increased levels of DNA damage-related indicators gamma-H2AX, 8-hydroxy-2'-deoxyguanosine, the olive tail moment (OTM) and DNA content of comet tail (TailDNA%) in trailing cells. Moreover, MC-LR activated the ATM/p53 pathway by enhancing the phosphorylation levels of ATM, CHK2 and p53 proteins, and then led to cell autophagy, ultimately triggering disrupted testicular cell arrangement, reduced sperm count and spermatogenic cell shedding. Importantly, after pretreatment with the antioxidant NAC, the expression levels of DNA damage-related indicators and the extent of damage in male germ cells were significantly reduced. Furthermore, pretreatment with the ATM inhibitor KU55933 could reduce the occurrence of autophagy and mitigate testicular toxicity of MC-LR through inhibiting the activation of the ATM/p53 pathway. These results indicate that MC-LR-induced oxidative stress can activate the DNA damage-mediated ATM/p53 signalling pathway to induce autophagy in male germ cells. This study provides a novel insight to further clarify the reproductive toxicity caused by MC-LR and to protect male reproductive health.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Animais , Autofagia , Dano ao DNA , Células Germinativas/metabolismo , Masculino , Toxinas Marinhas , Camundongos , Microcistinas , Estresse Oxidativo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Environ Toxicol ; 35(8): 822-830, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32170997

RESUMO

Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide hepatotoxin produced by cyanobacteria. MicroRNA-122 (miR-122) is specifically expressed in the liver. This study focuses on the role of miR-122 in MC-LR-induced dysregulation of hepatic iron homeostasis in C57BL/6 mice. The thirty mice were randomly divided into five groups (Control, 12.5 µg/kg·BW MC-LR, 25 µg/kg·BW MC-LR, Negative control agomir and 25 µg/kg·BW MC-LR + miR-122 agomir). The results show that MC-LR decreases the expressions of miR-122, Hamp, and its related regulators, while increasing the content of hepatic iron and the expressions of FPN1 and Tmprss6. Furthermore, miR-122 agomir pretreatment improves MC-LR induced dysregulation of hepatic iron homeostasis by arousing the related regulators and reducing the expression of Tmprss6. These results suggest that miR-122 agomir can prevent the accumulation of hepatic iron induced by MC-LR, which may be related to the regulation of hepcidin by BMP/SMAD and IL-6/STAT signaling pathways.


Assuntos
Microcistinas/toxicidade , Testes de Toxicidade , Animais , Arginina , Hepcidinas , Homeostase , Ferro , Leucina , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo
4.
Environ Toxicol ; 34(10): 1074-1084, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31157505

RESUMO

Microcystin-LR (MC-LR), a potent endotoxin, can induce reproductive toxicity. In order to investigate the role and mechanisms of apoptosis (p53-dependent and mitochondrial pathways) of germ cells induced by MC-LR, the co-cultured primary Sertoli-germ cells from Sprague-Dawley rats were used for the experiments. Expression levels of proteins, genes, and mitochondrial membrane potential (MMP) were obtained after exposing co-cultured Sertoli-germ cells to MC-LR with or without the addition of the p53 inhibitor, pifithrin-α (PFT-α), and MMP inhibitor, cyclosporin A (CsA). Results indicated that MC-LR could activate p53-dependent pathway-associated proteins in Sertoli-germ cells, leading to a decrease in MMP (indicating the opening of mitochondrial permeability transition pore [mPTP] and the release of Cytochrome-c [Cyt-c]) from the mitochondria into the cytoplasm and eventually the induction of apoptosis. PFT-α inhibited the expression ofp53, ameliorated the MMP of the co-cultured Sertoli-germ cells, and prevented the release of Cyt-c from the mitochondria into the cytoplasm, which reduces the occurrence of apoptosis. Similarly, the decreased release of Cyt-c from the mitochondria into the cytoplasm and the declined level of apoptosis in Sertoli-germ cells induced by MC-LR were observed after the addition of CsA. These results indicated that the apoptosis of the co-cultured Sertoli-germ cells induced by MC-LR was mediated by the p53-dependent pathway, with the involvement of the opening of mPTP.


Assuntos
Células Germinativas/efeitos dos fármacos , Microcistinas/toxicidade , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Células de Sertoli/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cocultura , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Toxinas Marinhas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley , Células de Sertoli/citologia , Células de Sertoli/metabolismo
5.
Environ Int ; 188: 108771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805914

RESUMO

Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.


Assuntos
Apoptose , Camundongos Endogâmicos BALB C , Microcistinas , Piroptose , Espécies Reativas de Oxigênio , Espermatogênese , Microcistinas/toxicidade , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Piroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatozoides/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Nitrito de Sódio , Toxinas Marinhas , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
6.
J Agric Food Chem ; 70(35): 10907-10918, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36026589

RESUMO

Microcystin-leucine arginine (MC-LR), ubiquitous in water and food, is a threat to public health. In the present study, after C57BL/6J mice were fed with environmental concentrations of MC-LR (0, 1, 30, 60, 90, and 120 µg/L) for 6, 9, and 12 months, it was found that MC-LR could enter into mouse lung tissues and cause microstructural damage, as shown by western blotting and HE staining. Electron microscopy examination showed that MC-LR could damage the lung barrier by disruption of the tight junctions, which was confirmed by the decreased expression of tight junction markers, including Occludin, Claudin1, and ZO-1. In addition, MC-LR also increased the ubiquitination of Claudin1, indicating that MC-LR could disrupt tight junctions by promoting the degradation of Claudin1. Furthermore, MC-LR increased the levels of TNF-α and IL-6 in mouse lung tissues, leading to pneumonia. Importantly, pretreatment with PP2A activator D-erythro-sphingosine (DES) was found to significantly alleviate MC-LR-induced decrease of Occludin and Claudin1 by inhibiting the P-AKT/Snail pathway in vitro. Together, this study revealed that chronic exposure to MC-LR causes lung barrier damage, which involves PP2A activity inhibition and enhancement of Claudin1 ubiquitination. This study broadens the awareness of the toxic effects of MC-LR on the respiratory system, which has deep implications for public health.


Assuntos
Arginina , Leucina , Lesão Pulmonar , Microcistinas , Animais , Camundongos , Arginina/metabolismo , Arginina/toxicidade , Claudina-1/metabolismo , Leucina/metabolismo , Leucina/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Microcistinas/metabolismo , Microcistinas/toxicidade , Ocludina/metabolismo , Proteína Fosfatase 2/metabolismo , Ubiquitinação
7.
Toxins (Basel) ; 11(9)2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547379

RESUMO

The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.


Assuntos
Toxinas Bacterianas , Toxinas Marinhas , Microcistinas , Poluentes da Água , Animais , Toxinas Bacterianas/análise , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Monitoramento Ambiental , Humanos , Toxinas Marinhas/análise , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Microcistinas/análise , Microcistinas/química , Microcistinas/toxicidade , Poluentes da Água/análise , Poluentes da Água/química , Poluentes da Água/toxicidade
8.
Oncotarget ; 7(48): 79372-79387, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27764804

RESUMO

MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Regiões 3' não Traduzidas , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA