Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2013): 20232212, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113938

RESUMO

The ability to enrol for protection is an effective defensive strategy that has convergently evolved multiple times in disparate animal groups ranging from euarthropods to mammals. Enrolment is a staple habit of trilobites, and their biomineralized dorsal exoskeleton offered a versatile substrate for the evolution of interlocking devices. However, it is unknown whether trilobites also featured ventral adaptations for enrolment. Here, we report ventral exoskeletal adaptations that facilitate enrolment in exceptionally preserved trilobites from the Middle Ordovician Walcott-Rust Quarry in New York State, USA. Walcott-Rust trilobites reveal the intricate three-dimensional organization of the non-biomineralized ventral anatomy preserved as calcite casts, including the spatial relationship between the articulated sternites (i.e. ventral exoskeletal plates) and the wedge-shaped protopodites. Enrolment in trilobites is achieved by ventrally dipping the anterior margin of the sternites during trunk flexure, facilitated by the presence of flexible membranes, and with the close coupling of the wedge-shaped protopodites. Comparisons with the ventral morphology of extant glomerid millipedes and terrestrial isopods reveal similar mechanisms used for enrolment. The wedge-shaped protopodites of trilobites closely resemble the gnathobasic coxa/protopodite of extant horseshoe crabs. We propose that the trilobites' wedge-shaped protopodite simultaneously facilitated tight enrolment and gnathobasic feeding with the trunk appendages.


Assuntos
Artrópodes , Evolução Biológica , Animais , Fósseis , Artrópodes/anatomia & histologia , Caranguejos Ferradura , New York , Mamíferos
2.
Proc Biol Sci ; 288(1943): 20202075, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33499790

RESUMO

Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their effectiveness with biomechanical models. Here we present finite-element analysis models of two Cambrian trilobites with prominent gnathobases-Redlichia rex and Olenoides serratus-and compare these to the protopodites of the Cambrian euarthropod Sidneyia inexpectans and the modern American horseshoe crab, Limulus polyphemus. Results show that L. polyphemus, S. inexpectans and R. rex have broadly similar microstrain patterns, reflecting effective durophagous abilities. Conversely, low microstrain values across the O. serratus protopodite suggest that the elongate gnathobasic spines transferred minimal strain, implying that this species was less well-adapted to masticate hard prey. These results confirm that Cambrian euarthropods with transversely elongate protopodites bearing short, robust gnathobasic spines were likely durophages. Comparatively, taxa with shorter protopodites armed with long spines, such as O. serratus, were more likely restricted to a soft food diet. The prevalence of Cambrian gnathobase-bearing euarthropods and their various feeding specializations may have accelerated the development of complex trophic relationships within early animal ecosystems, especially the 'arms race' between predators and biomineralized prey.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Ecossistema , Extremidades/anatomia & histologia , Mastigação
3.
Arthropod Struct Dev ; 81: 101371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39033632

RESUMO

Trilobites were extremely abundant and diverse euarthropods from the Paleozoic Era, but our understanding of their non-biomineralized ventral morphology is restricted to localities with exceptional fossil preservation. The Ordovician-aged Walcott-Rust Quarry in New York State preserves exceptional trilobite fossils as calcite casts in three-dimensions with little to no deformation, providing a valuable view of their ventral morphology. Appendages of the two most abundant trilobites, Ceraurus pleurexanthemus and Flexicalymene senaria, have been known for over 150 years but the original preparation of the specimens as thin sections has led to significant disagreement about their anatomy. Ceraruus pleurexanthemus is more abundant in the thin section collections (157 specimens) and features nearly complete appendages including a subtriangular protopodite with stud-like gnathobases along the medial edge and long endites ventrally. The exopodite consists of a long proximal article bearing dumbbell-shaped lamellae (in cross section) and a shorter distal article, closely resembling that of the cheirurid Anacheirurus adserai from the Lower Ordovician Fezouata Shale biota of Morocco. The appendages of F. senaria (37 specimens) are less well preserved. The exopodite bears up to 40 dumbbell shaped lamellae (in cross section) and is proportionally longer relative to the endopodite of C. pleurexanthemus. The close morphological similarity observed between the exopodites of C. pleurexanthemus and A. adersai, despite originating from paleogeographically distant latitudes and temporally separated by over ca. 20 million years, shows that the proposed "Cambrian type" exopodite persisted through the majority of the Ordovician. The morphology of the endopodites between C. pleurexanthemus and A. adersai is more variable when compared to the organization of the exopodites, may reflect selective pressures from locomotion and feeding between these species.


Assuntos
Artrópodes , Fósseis , Fósseis/anatomia & histologia , Animais , New York , Artrópodes/anatomia & histologia , Artrópodes/ultraestrutura
4.
Elife ; 122024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356105

RESUMO

Euarthropods are an extremely diverse phylum in the modern, and have been since their origination in the early Palaeozoic. They grow through moulting the exoskeleton (ecdysis) facilitated by breaking along lines of weakness (sutures). Artiopodans, a group that includes trilobites and their non-biomineralizing relatives, dominated arthropod diversity in benthic communities during the Palaeozoic. Most trilobites - a hyperdiverse group of tens of thousands of species - moult by breaking the exoskeleton along cephalic sutures, a strategy that has contributed to their high diversity during the Palaeozoic. However, the recent description of similar sutures in early diverging non-trilobite artiopodans means that it is unclear whether these sutures evolved deep within Artiopoda, or convergently appeared multiple times within the group. Here, we describe new well-preserved material of Acanthomeridion, a putative early diverging artiopodan, including hitherto unknown details of its ventral anatomy and appendages revealed through CT scanning, highlighting additional possible homologous features between the ventral plates of this taxon and trilobite free cheeks. We used three coding strategies treating ventral plates as homologous to trilobite-free cheeks, to trilobite cephalic doublure, or independently derived. If ventral plates are considered homologous to free cheeks, Acanthomeridion is recovered sister to trilobites, however, dorsal ecdysial sutures are still recovered at many places within Artiopoda. If ventral plates are considered homologous to doublure or non-homologous, then Acanthomeridion is not recovered as sister to trilobites, and thus the ventral plates represent a distinct feature to trilobite doublure/free cheeks.


Assuntos
Artrópodes , Evolução Biológica , Fósseis , Animais , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Filogenia , Muda
5.
Nat Commun ; 13(1): 410, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058474

RESUMO

Recent years have witnessed a steady increase in reports of fossilized nervous tissues among Cambrian total-group euarthropods, which allow reconstructing the early evolutionary history of these animals. Here, we describe the central nervous system of the stem-group chelicerate Mollisonia symmetrica from the mid-Cambrian Burgess Shale. The fossilized neurological anatomy of M. symmetrica includes optic nerves connected to a pair of lateral eyes, a putative condensed cephalic synganglion, and a metameric ventral nerve cord. Each trunk tergite is associated with a condensed ganglion bearing lateral segmental nerves, and linked by longitudinal connectives. The nervous system is preserved as reflective carbonaceous films underneath the phosphatized digestive tract. Our results suggest that M. symmetrica illustrates the ancestral organization of stem-group Chelicerata before the evolution of the derived neuroanatomical characters observed in Cambrian megacheirans and extant representatives. Our findings reveal a conflict between the phylogenetic signals provided by neuroanatomical and appendicular data, which we interpret as evidence of mosaic evolution in the chelicerate stem-lineage.


Assuntos
Artrópodes/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Neuroanatomia , Animais , Colúmbia Britânica , Sedimentos Geológicos , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA