Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(12): 7953-8039, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37262362

RESUMO

Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Biomarcadores , Microfluídica
2.
Anal Chem ; 96(15): 5960-5967, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38581372

RESUMO

Nonobstructive azoospermia (NOA) is an important cause of infertility, and intracytoplasmic sperm injection (ICSI) is the mainstay of treatment for these patients. In cases where a sufficient number of sperm (usually 1-2) is not available, the selection of oocytes for ICSI is a difficult problem that must be solved. Here, we constructed a dual-activated oxidative stress-responsive AIE probe, b-PyTPA. The strong donor-acceptor configuration of b-PyTPA leads to twisted intramolecular charge transfer (TICT) effect that quenches the fluorescence of the probe, however, H2O2 would specifically remove the boronatebenzyl unit and release a much weaker acceptor, which inhibits TICT and restores the fluorescence. In addition, the presence of a pyridine salt makes b-PyTPA more hydrophilic, whereas removal of the pyridine salt increases the hydrophobicity of PyTPA, which triggers aggregation and further enhances fluorescence. Thus, the higher the intracellular level of oxidative stress, the stronger the fluorescence. In vitro, this dual-activated fluorescent probe is capable of accurately detecting senescent cells (high oxidative stress). More importantly, b-PyTPA was able to characterize senescent oocytes, as assessed by the level of oxidative stress. It is also possible to identify high quality oocytes from those obtained for subsequent ICSI. In conclusion, this dual-activated oxidative stress-assessment probe enables the quality assessment of oocytes and has potential application in ICSI.


Assuntos
Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/etiologia , Infertilidade Masculina/terapia , Peróxido de Hidrogênio , Sêmen , Espermatozoides , Oócitos , Piridinas/farmacologia
3.
Anal Chem ; 96(4): 1630-1639, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38217493

RESUMO

Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.


Assuntos
Aflatoxinas , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química
4.
Anal Chem ; 96(8): 3609-3617, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38364862

RESUMO

Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.


Assuntos
Neoplasias Pancreáticas , Cirurgia Assistida por Computador , Humanos , Corantes Fluorescentes , Compostos de Sulfidrila , Imagem Óptica
5.
Artigo em Inglês | MEDLINE | ID: mdl-38867107

RESUMO

PURPOSE: Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS: AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS: In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION: We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.

6.
Eur J Nucl Med Mol Imaging ; 51(8): 2338-2352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411667

RESUMO

PURPOSE: Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2. METHODS: In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N', N″-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30-45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2. RESULTS: Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively. CONCLUSION: The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies. TRIAL REGISTRATION: ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).


Assuntos
Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Neoplasias do Colo do Útero , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Animais , Camundongos , Compostos Heterocíclicos com 1 Anel/química , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/química , Radioisótopos de Gálio/química , Linhagem Celular Tumoral , Compostos Heterocíclicos/química , Distribuição Tecidual , Peptídeos/química , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Pessoa de Meia-Idade , Multimerização Proteica , Traçadores Radioativos
7.
Chem Soc Rev ; 52(18): 6270-6293, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37581902

RESUMO

Bio-markers, such as ions, small molecules, nucleic acids, peptides, proteins and cells, participate in the construction of living organisms and play important roles in biological processes. It is of great significance to accurately detect these bio-markers for studying their basic functions, the development of molecular diagnosis and to better understand life processes. Solid-state nanochannel-based sensing systems have been demonstrated for the detection of bio-markers, due to their rapid, label-free and high-throughput screening, with high sensitivity and specificity. Generally, studies on solid-state nanochannels have focused on probes on the inner-wall (PIW), ignoring probes on the outer-surface (POS). As a result, the direct detection of cells is difficult to realize by these inner-wall focused nanochannels. Moreover, the sensitivity for detecting ions, small molecules, nucleic acids, peptides and proteins requires further improvement. Recent research has focused on artificial solid-state nanochannels with POS, which have demonstrated the ability to independently regulate ion transport. This design not only contributes to the in situ detection of large analytes, such as cells, but also provides promising opportunities for ultra-high sensitivity detection with a clear mechanism. In this tutorial review, we present an overview of the detection principle used for solid-state nanochannels, inner-wall focused nanochannels and outer-surface focused nanochannels. Furthermore, we discuss the remaining challenges faced by current nanochannel technologies and provide insights into their prospects.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Nanoestruturas/química , Transporte de Íons , Peptídeos , Íons
8.
Nano Lett ; 23(12): 5811-5821, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289977

RESUMO

Nuclear proteins have been regarded as attractive targets for exploiting therapeutic agents. However, those agents cannot efficiently pass through nuclear pores and it is also difficult to overcome the crowded nuclear environment to react with proteins. Herein, we propose a novel strategy acting in the cytoplasm to regulate nuclear proteins based on their signaling pathways, instead of directly entering into nuclei. A multifunctional complex PKK-TTP/hs carries human telomerase reverse transcriptase (hTERT) small interfering RNA (defined as hs) for gene silencing in the cytoplasm, which reduced the import of nuclear protein. At the same time, it could generate reactive oxygen species (ROS) under light irradiation, which raised the export of nuclear proteins by promoting proteins translocation. Through this dual-regulatory pathway, we successfully reduced nuclear protein (hTERT proteins) in vivo (42.3%). This work bypasses the challenge of directly entering into the nucleus and provides an effective strategy for regulating nuclear proteins.


Assuntos
Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares
9.
Angew Chem Int Ed Engl ; 63(5): e202313139, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37889872

RESUMO

Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.


Assuntos
Nanofibras , Neoplasias , Humanos , Nanofibras/química , Organelas
10.
Angew Chem Int Ed Engl ; 63(17): e202400766, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38438308

RESUMO

Realizing protein analysis in organelles of living cells is of great significance for developing diagnostic and therapeutic methods of diseases. Fluorescent-labeled antibodies with well imaging performance and high affinity are classical biochemical tools for protein analysis, while due to the inability to effectively enter into cells, not to mention organelles and the uncontrollable reaction sites that might cause antibodies inactivation when chemically modification, they are hard to apply to living cells. Inspired by the structure of fluorescent-labeled antibodies, we designed as a universal detection platform that was based on the peptide-conjugated probes (PCPs) and consisted of three parts: a) a rotor type fluorescent molecular scaffold for conjugation and signal output; b) the cell penetration protein recognition unit; c) the subcellular organelle targeting unit. In living cells, PCPs could firstly localize at organelles and then proceed protein specific recognition, thus jointly leading to the restriction of twisted intramolecular charge transfer and activation of fluorescence signal. As a proof-of-concept, six different proteins in three typical intracellular organelles could be detected by our platform through simply replacing the recognition sequence of proteins and matching organelle targeting units. The position and intensity of fluorescence signals demonstrated specificity of PCPs and universality of the platform.


Assuntos
Corantes Fluorescentes , Organelas , Corantes Fluorescentes/química , Organelas/química , Peptídeos/metabolismo , Fluorescência
11.
Angew Chem Int Ed Engl ; 63(9): e202317578, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38192016

RESUMO

Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+ ) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+ -regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cálcio , Fototerapia , Neoplasias/tratamento farmacológico , Verde de Indocianina , Retículo Endoplasmático
12.
Anal Chem ; 95(4): 2513-2522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36683262

RESUMO

Cell membrane transport is the first and crucial step for bioprobes to realize the diagnosis, imaging, and therapy in cells. However, during this transport, there is a trade-off between anchoring and internalization steps, which will seriously affect the membrane transport efficiency. In the past, because the interaction between probes and cell membrane is constant, this challenge is hard to solve. Here, we proposed a strategy to regulate the membrane affinity of multi-module probes that enabled probe to have strong affinity during cell membrane anchoring and weak affinity during internalization. Specifically, a multi-module probe defined as LK-M-NA was constructed, which consisted of three main parts, membrane-anchoring α-helix peptide (LK), anchoring regulator (M), and therapeutic module (NA). With the α-helix module, LK-M-NA was able to rapidly anchor on the cell membrane and the binding energy was -1450.90 kcal/mol. However, after pericellular cleavage by the highly active matrix metalloproteinase-2 , LK could be removed due to the breakage of M and the binding energy reduced to -869.95 kcal/mol. Thus, the internalization restriction caused by high affinity was relieved. Owing to the alterable affinity, the membrane transport efficiency of LK-M-NA increased to 14.58%, well addressing the trade-off problem.


Assuntos
Metaloproteinase 2 da Matriz , Peptídeos , Membrana Celular , Transporte Biológico , Membranas
13.
Anal Chem ; 95(34): 12903-12912, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37594437

RESUMO

Inducing and monitoring cell apoptosis in a real-time manner are crucial for evaluating the therapeutic effect of drugs and avoiding excessive treatment. Although promising advancements have been made to monitor cell apoptosis by assessing cell membrane integrity, the chronic compromise of cellular fitness caused by imbalance proteostasis is not visible and hard to be detected. As an indicator for cell apoptosis, imaging of aggregated proteins provides a new direction. Herein, we design a peptide-conjugated probe (QRKN) that can induce mitochondrial dysfunction for self-reporting cell apoptosis by imaging aggregated proteins. Specifically, QRKN can be cleaved into the α-helix-forming part (QRK) and azide-modified small-molecule part (N) by overexpressed cathepsin B (CB) in tumor cells. The QRK part can destroy the mitochondrial membrane and promote cytochrome c (Cyt c) efflux and caspase 3 expression. The other N part can inhibit the activity of mitochondrial complex IV (Mito-IV) and decrease the expression level of adenosine triphosphate (ATP). Two signaling pathways cooperatively induce mitochondrial dysfunction, resulting in protein aggregation and cell apoptosis ultimately. Meanwhile, the cell apoptosis process can be monitored based on QRKN, which is highly sensitive to the aggregated protein-triggered viscosity change. The self-reporting probe can monitor therapeutic responses and provide valuable diagnosis information.


Assuntos
Apoptose , Peptídeos , Complexo IV da Cadeia de Transporte de Elétrons , Trifosfato de Adenosina , Azidas
14.
Anal Chem ; 95(40): 15068-15077, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37767787

RESUMO

Fluorescence imaging can improve surgical accuracy in ovarian cancer, but a high signal-to-noise ratio is crucial for tiny metastatic cancers. Meanwhile, intraoperative fluorescent surgical navigation modalities alone are still insufficient to completely remove ovarian cancer lesions, and the recurrence rate remains high. Here, we constructed a cancer-associated fibroblasts (CAFs)-mimetic aggregation-induced emission (AIE) probe to enable full-cycle management of surgery that eliminates recurrence. AIE molecules (P3-PPh3) were packed in hollow mesoporous silica nanoparticles (HMSNs) to form HMSN-probe and then coated with a CAFs membrane to prepare CAF-probe. First, due to the negative potential of the CAF-probe, the circulation time in vivo is elevated, which facilitates passive tumor targeting. Second, the CAF-probe avoids its clearance by the immune system and improves the bioavailability. Finally, the fibronectin on the CAF-probe specifically binds to integrin α-5 (ITGA5), which is highly expressed in ovarian cancer cells, enabling fluorescence imaging with a contrast of up to 8.6. CAF-probe-based fluorescence imaging is used to evaluate the size and location of ovarian cancer before surgery (preoperative evaluation), to guide tumor removal during surgery (intraoperative navigation), and to monitor tumor recurrence after surgery (postoperative monitoring), ultimately significantly improving the efficiency of surgery and completely eliminating tumor recurrence. In conclusion, we constructed a CAFs mimetic AIE probe and established a full-cycle surgical management model based on its precise imaging properties, which significantly reduced the recurrence of ovarian cancer.

15.
Chemistry ; 29(9): e202203225, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36333271

RESUMO

The analysis and regulation of proteins are of great significance for the development of disease diagnosis and treatment. However, complicated analytical environment and complex protein structure severely limit the accuracy of their analysis results. Nowadays, ascribing to the editability and bioactivity of peptides, peptide-based probes could meet the requirements of good selectivity and high affinity to overcome the challenges. In this review, we summarize the advances in the use of modular peptide probes for proteins analysis. It focuses on how to design and optimize the structure of probes, as well as their performance. Then, the strategies and application to improve the analysis result of modular peptide probes are introduced. Finally, we also discuss current challenge and provide some ideas for the future direction for modular peptide probes, hoping to accelerate their clinical transformation.


Assuntos
Corantes Fluorescentes , Peptídeos , Corantes Fluorescentes/química , Peptídeos/química , Proteínas
16.
Angew Chem Int Ed Engl ; 62(43): e202309671, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37672359

RESUMO

Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.

17.
Anal Chem ; 94(11): 4874-4880, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276037

RESUMO

By maintaining the telomere lengths, telomerase can make the tumor cells avoid the apoptosis, thus, achieving the cell immortalization. In the past, a series of telomerase detection systems have been developed through utilizing the unique characteristic of telomerase extended primer. However, fluctuation of telomerase activity, along with the cell cycle progression, leads to ambiguous detection results. Here, we reported a dual signal output detection strategy based on cell-cycle synchronization for precisely detecting telomerase activities by using a new AIEgen probe SSNB. Experimental and simulating calculation results demonstrated that positively charged SSNB could interact with DNA through the electrostatic interaction and π-π interaction, as well as the hydrogen bonds. The aggregation of SSNB caused by the extended template strand primer (TP) could be observed in tumor cells, thus, indicating the telomerase activity in various cell lines. Furthermore, after cell cycle synchronization, it was found that the telomerase activity in the S phase was the highest, no matter from the fluorescence intensity or the ROS generation situation. Dual signal outputs of SSNB verified the significance and necessity of cell-cycle synchronization detection for telomerase activity. This strategy could open a new window for the biotargets of which activity is variational in time dimension.


Assuntos
Telomerase , Ciclo Celular , Divisão Celular , Linhagem Celular , DNA/química , Telomerase/metabolismo , Telômero/metabolismo
18.
Anal Chem ; 94(22): 7960-7969, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594188

RESUMO

Before arriving at the intracellular destinations, probes might be trapped in the lysosomes, reducing the amount of cargos, which compromises the therapeutic outcomes. The current methods are based on the fact that probes enter the lysosomes and then escape from them, which do not fundamentally solve the degradation by lysosomal hydrolases. Here, an enzyme-responsive modular peptide probe named PKP that can be divided into two parts, Pal-part and KP-part, by matrix metalloproteinase-2 (MMP-2) overexpressed in tumor microenvironments is designed. Pal-part quickly enters the cells and forms nanofibers in the lysosomes, decreasing protein phosphatase 2A (PP2A), which transforms the endocytic pathway of KP-part from clathrin-mediated endocytosis (CME) into caveolae-mediated endocytosis (CvME) and allows KP-part to directly reach the mitochondria sites without passing through the lysosomes. Finally, through self-regulating intracellular delivery pathways, the mitochondrial delivery efficiency of KP-part is greatly improved, leading to an optimized image-guided therapeutic efficiency. Furthermore, this system also shows great potential for the delivery of siRNA and doxorubicin to achieve precise cancer image-guided therapy, which is expected to significantly expand its application and facilitate the development of personalized therapy.


Assuntos
Metaloproteinase 2 da Matriz , Autocontrole , Endocitose , Lisossomos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Peptídeos/metabolismo
19.
Anal Chem ; 94(50): 17504-17513, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473081

RESUMO

Assessment of fetal maturity is essential for timely termination of pregnancy, especially in pregnant women with pregnancy complications. However, there is a lack of methods to assess the maturity of fetal intestinal function. Here, we constructed erythrocyte membrane-camouflaged aggregation-induced emission (AIE) nanoparticles. Nanocore is formed using a hollow mesoporous silicon nanobox (HMSN) of different particle sizes loaded with AIE luminogens -PyTPA (P), which are then co-extruded with erythrocyte membranes (M) to construct M@HMSN@P. The 100 nm M@HMSN@P has a more effective cellular uptake efficiency in vitro and in vivo. Swallowing and intestinal function in fetal mice mature with the increase in gestational age. After intrauterine injection of M@HMSN@P, they were swallowed and absorbed by fetal mice, and their swallowed and absorbed amount was positively correlated with the gestational age with a correlation coefficient of 0.9625. Using the M@HMSN@P (fluorescence intensity) in fetal mice, the gestational age can be imputed, and the difference between this imputed gestational age and the actual gestational age is less than 1 day. Importantly, M@HMSN@P has no side effect on the health status of pregnant and fetal mice, showing good biocompatibility. In conclusion, we constructed M@HMSN@P nanoparticles with different particle sizes and confirmed that the smaller size M@HMSN@P has more efficient absorption efficiency and it can assess fetal intestinal maturity by the intensity of the fluorescence signal.


Assuntos
Neuropatia Hereditária Motora e Sensorial , Nanopartículas , Gravidez , Feminino , Humanos , Animais , Camundongos , Membrana Eritrocítica
20.
Small ; 18(17): e2200743, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347841

RESUMO

Developing effective therapies to fight against biofilm-associated infection is extremely urgent. The complex environment of biofilm forces the bacteria to evade the elimination of antibiotics, resulting in recalcitrant chronic infections. To address this issue, a cationic antibacterial agent based on phosphindole oxide (ß-PM-PIO) is designed and prepared. The unique molecular structure endows ß-PM-PIO with aggregation-induced emission feature and efficient singlet oxygen generation ability. ß-PM-PIO shows excellent visual diagnostic function to planktonic bacteria and biofilm. In addition, owing to the synergistic effect of phototoxicity and dark toxicity, ß-PM-PIO can achieve superb antibacterial and antibiofilm performance against Gram-positive bacteria with less potential of developing drug resistance. Notably, ß-PM-PIO also holds excellent anti-infection capacity against drug-resistant bacteria in vivo with negligible side effects. This work offers a promising platform to develop advanced antibacterial agents against multidrug-resistant bacterial infection.


Assuntos
Infecções Bacterianas , Fármacos Fotossensibilizantes , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Biofilmes , Cátions , Humanos , Testes de Sensibilidade Microbiana , Óxidos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Plâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA