Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 133(5): 608-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18427681

RESUMO

A compact and low-power microcantilever-based sensor array has been developed and used to detect various chemical vapor analytes. In contrast to earlier micro-electro-mechanical systems (MEMS) array sensors, this device uses the static deflection of piezoresistive cantilevers due to the swelling of glassy polyolefin coatings during sorption of chemical vapors. To maximize the sensor response to a variety of chemical analytes, the polymers are selected based on their Hildebrand solubility parameters to span a wide range of chemical properties. We utilize a novel microcontact spotting method to reproducibly coat a single side of each cantilever in the array with the polymers. To demonstrate the utility of the sensor array we have reproducibly detected 11 chemical vapors, representing a breadth of chemical properties, in real time and over a wide range of vapor concentrations. We also report the detection of the chemical warfare agents (CWAs) VX and sulfur mustard (HD), representing the first published report of CWA vapor detection by a polymer-based, cantilever sensor array. Comparisons of the theoretical polymer/vapor partition coefficient to the experimental cantilever deflection responses show that, while general trends can be reasonably predicted, a simple linear relationship does not exist.


Assuntos
Poluentes Atmosféricos/análise , Substâncias para a Guerra Química/análise , Eletroquímica/métodos , Gases/análise , Medidas de Segurança , Eletroquímica/instrumentação , Eletrônica , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Polímeros , Volatilização
2.
J Colloid Interface Sci ; 316(2): 687-93, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17904571

RESUMO

An optical static method of detection is used to interpret surface stress induced bending related to cantilevers coated on one side with poly(vinyl alcohol), poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate), and poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate), or respectively, PVA, PVB, and PVC, and exposed to various solvent vapors. Results indicate that the adsorption and surface interactions of the different solvent vapors that cause polymer swelling and shrinking lead to rearrangements, which have been shown to change the elastic properties of the polymer film, and subsequently, the spring constant of the polymer coated cantilever. Static deflection measurements allow the direction of cantilever bending to be determined, which adds a new dimension of usefulness for surface functionalized cantilevers as transducers in the development of novel microelectromechanical systems (MEMS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA