RESUMO
Joubert syndrome-related disorders (JSRD) are a group of syndromes sharing the neuroradiological features of cerebellar vermis hypoplasia and a peculiar brainstem malformation known as the 'molar tooth sign'. We identified mutations in the CEP290 gene in five families with variable neurological, retinal and renal manifestations. CEP290 expression was detected mostly in proliferating cerebellar granule neuron populations and showed centrosome and ciliary localization, linking JSRDs to other human ciliopathies.
Assuntos
Antígenos de Neoplasias/genética , Encéfalo/anormalidades , Mutação , Proteínas de Neoplasias/genética , Animais , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Centrossomo/metabolismo , Proteínas do Citoesqueleto , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SíndromeRESUMO
Primary cilia detect extracellular signals through membrane receptors and channels. The outer segment of a vertebrate photoreceptor cell represents the most elaborate of all primary cilia, containing extraordinarily large amounts of the visual receptor protein, opsin. Because of its high abundance, opsin represents a potential model system for the study of ciliary membrane receptors, including their transport. Here, we have analyzed the movement of ciliary opsin to test whether the highly conserved intraflagellar transport (IFT), as driven by heterotrimeric kinesin-2, is required. Results show that opsin can enter and move along the primary cilium of a nonphotoreceptor cell (an hTERT-RPE1 epithelial cell), suggesting that it can co-opt the basic anterograde motor system of cilia. Fluorescence recovery after photobleaching analysis of cilia of hTERT-RPE1 cells showed that the movement of ciliary opsin was comparable to that of the IFT protein, IFT88. Moreover, the movement of opsin in these cilia, as well as in cilia of mouse rod photoreceptor cells, was reduced significantly when KIF3A, the obligate motor subunit of heterotrimeric kinesin-2, was deficient. These studies therefore provide evidence from live-cell analysis that the conserved heterotrimeric kinesin-2 is required for the normal transport of opsin along the ciliary plasma membrane.
Assuntos
Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células Fotorreceptoras/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Humanos , Técnicas In Vitro , Cinesinas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Fotodegradação , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Retina/citologia , Retina/metabolismo , Opsinas de Bastonetes/genética , Transdução de Sinais/genética , Transfecção/métodos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.
Assuntos
Doenças Cerebelares/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Anormalidades do Olho/genética , Ácido Glutâmico/metabolismo , Doenças Renais Policísticas/genética , Proteínas/genética , Tubulina (Proteína)/metabolismo , Animais , Centrossomo/metabolismo , Mapeamento Cromossômico , Cílios/metabolismo , Feminino , Loci Gênicos , Humanos , Masculino , Camundongos , Mutação , Peptídeo Sintases/metabolismo , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , SíndromeRESUMO
The ciliopathy Joubert syndrome is marked by cerebellar vermis hypoplasia, a phenotype for which the pathogenic mechanism is unclear. To investigate Joubert syndrome pathogenesis, we have examined mice with mutated Ahi1, the first identified Joubert syndrome-associated gene. These mice show cerebellar hypoplasia with a vermis-midline fusion defect early in development. This defect is concomitant with expansion of the roof plate and is also evident in a mouse mutant for another Joubert syndrome-associated gene, Cep290. Furthermore, fetal magnetic resonance imaging (MRI) of human subjects with Joubert syndrome reveals a similar midline cleft, suggesting parallel pathogenic mechanisms. Previous evidence has suggested a role for Jouberin (Jbn), the protein encoded by Ahi1, in canonical Wnt signaling. Consistent with this, we found decreased Wnt reporter activity at the site of hemisphere fusion in the developing cerebellum of Ahi1-mutant mice. This decrease was accompanied by reduced proliferation at the site of fusion. Finally, treatment with lithium, a Wnt pathway agonist, partially rescued this phenotype. Our findings implicate a defect in Wnt signaling in the cerebellar midline phenotype seen in Joubert syndrome that can be overcome with Wnt stimulation.
Assuntos
Cerebelo/anormalidades , Modelos Animais de Doenças , Proteínas Wnt/fisiologia , Anormalidades Múltiplas , Proteínas Adaptadoras de Transporte Vesicular , Animais , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Doenças Cerebelares/etiologia , Doenças Cerebelares/genética , Doenças Cerebelares/patologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Cerebelo/fisiologia , Proteínas do Citoesqueleto , Anormalidades do Olho/etiologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Humanos , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Lítio/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Mutantes , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Retina/anormalidades , Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Wnt/genéticaRESUMO
Degeneration of photoreceptors is a common feature of ciliopathies, owing to the importance of the specialized ciliary structure of these cells. Mutations in AHI1, which encodes a cilium-localized protein, have been shown to cause a form of Joubert syndrome that is highly penetrant for retinal degeneration. We show that Ahi1-null mice fail to form retinal outer segments and have abnormal distribution of opsin throughout their photoreceptors. Apoptotic cell death of photoreceptors occurs rapidly between 2 and 4 weeks of age in these mice and is significantly (P = 0.00175 and 0.00613) delayed by a reduced dosage of opsin. This phenotype also shows dosage-sensitive genetic interactions with Nphp1, another ciliopathy-related gene. Although it is not a primary cause of retinal blindness in humans, we show that an allele of AHI1 is associated with a more than sevenfold increase in relative risk of retinal degeneration within a cohort of individuals with the hereditary kidney disease nephronophthisis. Our data support context-specific roles for AHI1 as a contributor to retinopathy and show that AHI1 may explain a proportion of the variability in retinal phenotypes observed in nephronophthisis.
Assuntos
Células Fotorreceptoras de Vertebrados/patologia , Proteínas Proto-Oncogênicas/metabolismo , Degeneração Retiniana/patologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Substituição de Aminoácidos/genética , Animais , Proteínas de Transporte/genética , Morte Celular , Linhagem Celular , Proteínas do Citoesqueleto , Humanos , Itália , Camundongos , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestrutura , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Degeneração Retiniana/genéticaRESUMO
Cystic kidney disease represents a major cause of end-stage renal disease, yet the molecular mechanisms of pathogenesis remain largely unclear. Recent emphasis has been placed on a potential role for canonical Wnt signaling, but investigation of this pathway in adult renal homeostasis is lacking. Here we provide evidence of a previously unidentified canonical Wnt activity in adult mammalian kidney homeostasis, the loss of which leads to cystic kidney disease. Loss of the Jouberin (Jbn) protein in mouse leads to the cystic kidney disease nephronophthisis, owing to an unexpected decrease in endogenous Wnt activity. Jbn interacts with and facilitates beta-catenin nuclear accumulation, resulting in positive modulation of downstream transcription. Finally, we show that Jbn is required in vivo for a Wnt response to injury and renal tubule repair, the absence of which triggers cystogenesis.
Assuntos
Doenças Renais Císticas/etiologia , Doenças Renais Císticas/fisiopatologia , Rim/fisiopatologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Animais , Cílios/fisiologia , Homeostase , Rim/patologia , Doenças Renais Císticas/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Transdução de SinaisRESUMO
Over three decades have passed since Marie Joubert described the original proband for Joubert syndrome, a rare neurological disorder featuring absence of the cerebellar vermis (i.e. midline). Efforts at deciphering the molecular basis for this disease have been complicated by the clinical and genetic heterogeneity as well as extensive phenotypic overlap with other syndromes. However, progress has been made in recent years with the mapping of three genetic loci and the identification of mutations in two genes, AHI1 and NPHP1. These genes encode proteins with some shared functional domains, but their role in brain development is unclear. Clues may come from studies of related syndromes, including Bardet-Biedl syndrome and nephronophthisis, for which all of the encoded proteins localize to primary cilia. The data suggest a tantalizing connection between intraflagellar transport in cilia and brain development.
Assuntos
Cerebelo/anormalidades , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Síndrome de Bardet-Biedl/genética , Cílios/metabolismo , Proteínas do Citoesqueleto , Humanos , Proteínas de Membrana , Modelos Biológicos , SíndromeRESUMO
Joubert syndrome (JS) is an autosomal recessive disorder marked by agenesis of the cerebellar vermis, ataxia, hypotonia, oculomotor apraxia, neonatal breathing abnormalities, and mental retardation. Despite the fact that this condition was described >30 years ago, the molecular basis has remained poorly understood. Here, we identify two frameshift mutations and one missense mutation in the AHI1 gene in three consanguineous families with JS, some with cortical polymicrogyria. AHI1, encoding the Jouberin protein, is an alternatively spliced signaling molecule that contains seven Trp-Asp (WD) repeats, an SH3 domain, and numerous SH3-binding sites. The gene is expressed strongly in embryonic hindbrain and forebrain, and our data suggest that AHI1 is required for both cerebellar and cortical development in humans. The recently described mutations in NPHP1, encoding a protein containing an SH3 domain, in a subset of patients with JS plus nephronophthisis, suggest a shared pathway.