Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochim Biophys Acta ; 1860(11 Pt A): 2510-2520, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27475002

RESUMO

BACKGROUND: Diphenylditelluride (PhTe)2 is a potent neurotoxin disrupting the homeostasis of the cytoskeleton. METHODS: Cultured astrocytes and neurons were incubated with (PhTe)2, receptor antagonists and enzyme inhibitors followed by measurement of the incorporation of [32P]orthophosphate into intermediate filaments (IFs). RESULTS: (PhTe)2 caused hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) from primary astrocytes and neurons, respectively. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors, L-type voltage-dependent calcium channels (L-VDCCs) as well as metabotropic glutamate receptors upstream of phospholipase C (PLC). Upregulated Ca(2+) influx activated protein kinase A (PKA) and protein kinase C (PKC) in astrocytes causing hyperphosphorylation of GFAP and vimentin. Hyperphosphorylated (IF) together with RhoA-activated stress fiber formation, disrupted the cytoskeleton leading to altered cell morphology. In neurons, the high intracellular Ca(2+) levels activated the MAPKs, Erk and p38MAPK, beyond PKA and PKC, provoking hyperphosphorylation of NFM, NFH and NFL. CONCLUSIONS: Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in isolated cortical astrocytes and neurons modulating the response of the cytoskeleton against the insult. GENERAL SIGNIFICANCE: Cytoskeletal misregulation is associated with neurodegeneration. This compound could be a valuable tool to induce molecular changes similar to those found in different pathologies of the brain.


Assuntos
Citoesqueleto de Actina/metabolismo , Astrócitos/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Sinalização do Cálcio , Neurônios/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Astrócitos/metabolismo , Derivados de Benzeno/toxicidade , Células Cultivadas , Neurônios/metabolismo , Compostos Organometálicos/toxicidade , Ratos , Ratos Wistar
2.
Purinergic Signal ; 12(1): 149-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26695181

RESUMO

In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Guanosina/administração & dosagem , Guanosina/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Administração Intranasal , Animais , Comportamento Animal , Isquemia Encefálica/psicologia , Infarto Cerebral/patologia , Infarto Cerebral/prevenção & controle , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Guanosina/líquido cefalorraquidiano , Guanosina/farmacocinética , Masculino , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/líquido cefalorraquidiano , Fármacos Neuroprotetores/farmacocinética , Ratos , Ratos Wistar , Acidente Vascular Cerebral/psicologia
3.
Exp Cell Res ; 319(3): 89-104, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23142028

RESUMO

Hyperprolinemia is an inherited disorder of proline (Pro) metabolism and patients affected by this disease may present neurological manifestations. However, the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering the pivotal role of cytoskeletal remodeling in several neurodegenerative pathologies and the potential links between cytoskeleton, reactive oxygen species production and cell death, the aim of the present work was to study the effects of Pro on astrocyte and neuron cytoskeletal remodeling and the possible oxidative stress involvement. Pro induced a shift of actin cytoskeleton in stress fibers together with increased RhoA immunocontent and ERK1/2 phosphorylation/activation in cortical astrocytes. Unlike astrocytes, results evidenced little susceptibility of neuron cytoskeleton remodeling, since Pro-treated neurons presented unaltered neuritogenesis. We observed increased hydrogen peroxide production characterizing oxidative stress together with decreased superoxide dismutase (SOD) and catalase (CAT) activities in cortical astrocytes after Pro treatment, while glutathione peroxidase (GSHPx) activity remained unaltered. However, coincubation with Pro and Trolox/melatonin prevented decreased SOD and CAT activities in Pro-treated astrocytes. Accordingly, these antioxidants were able to prevent the remodeling of the actin cytoskeleton, RhoA increased levels and ERK1/2 phosphorylation in response to high Pro exposure. Taken together, these findings indicated that the cytoskeleton of cortical astrocytes, but not of neurons in culture, is a target to Pro and such effects could be mediated, at least in part, by redox imbalance, RhoA and ERK1/2 signaling pathways. The vulnerability of astrocyte cytoskeleton may have important implications for understanding the effects of Pro in the neurotoxicity linked to inborn errors of Pro metabolism.


Assuntos
Astrócitos/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Prolina/farmacologia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Astrócitos/metabolismo , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Embrião de Mamíferos , Estresse Oxidativo/fisiologia , Prolina/efeitos adversos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
4.
Metab Brain Dis ; 28(3): 429-38, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23378107

RESUMO

Carbonyl compounds such as methylglyoxal (MGO) seem to play an important role in complications resulting from diabetes mellitus, in aging and neurodegenerative disorders. In this study, we are showing, that MGO is able to suppress cell viability and induce apoptosis in the cerebral cortex and hippocampus of neonatal rats ex-vivo. These effects are partially related with ROS production, evaluated by DCFH-DA assay. Coincubation of MGO and reduced glutathione (GSH) or Trolox (vitamin E) totally prevented ROS production but only partially prevented the MGO-induced decreased cell viability in the two brain structures, as evaluated by the MTT assay. Otherwise, L-NAME, a nitric oxide (NO) inhibitor, partially prevented ROS production in the two structures but partially prevented cytotoxicity in the hippocampus. Pharmacological inhibition of Erk, has totally attenuated MGO-induced ROS production and cytotoxicity, suggesting that MEK/Erk pathway could be upstream of ROS generation and cell survival. Otherwise, p38MAPK and JNK failed to prevent ROS generation but induced decreased cell survival consistent with ROS-independent mechanisms. We can propose that Erk, p38MAPK and JNK are involved in the cytotoxicity induced by MGO through different signaling pathways. While Erk could be an upstream effector of ROS generation, p38MAPK and JNK seem to be associated with ROS-independent cytotoxicity in neonatal rat brain. The cytotoxic damage progressed to apoptotic cell death at MGO concentration higher than those described for adult brain, suggesting that the neonatal brain is resistant to MGO-induced cell death. The consequences of MGO-induced brain damage early in life, remains to be clarified. However, it is feasible that high MGO levels during cortical and hippocampal development could be, at least in part, responsible for the impairment of cognitive functions in adulthood.


Assuntos
Encéfalo/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Animais Recém-Nascidos , Anexina A5/metabolismo , Antioxidantes/farmacologia , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Corantes , Corantes Fluorescentes , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , MAP Quinase Quinase 4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Aldeído Pirúvico/antagonistas & inibidores , Aldeído Pirúvico/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sais de Tetrazólio , Tiazóis , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Toxicol Appl Pharmacol ; 264(2): 143-52, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22885153

RESUMO

In the present report 15day-old Wistar rats were injected with 0.3µmol of diphenyl ditelluride (PhTe)(2)/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein-GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe)(2) significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe)(2) provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe)(2) treated striatal slices suggested apoptotic cell death. (PhTe)(2) exposure decreased Akt immunoreactivity, however phospho-GSK-3-ß (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe)(2)-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis.


Assuntos
Derivados de Benzeno/toxicidade , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Neostriado/patologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Síndromes Neurotóxicas/patologia , Proteína Oncogênica v-akt/fisiologia , Compostos Organometálicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proteínas do Citoesqueleto/metabolismo , Eletroforese em Gel de Poliacrilamida , Feminino , Citometria de Fluxo , Gliose/induzido quimicamente , Gliose/patologia , Homeostase/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Neurônios/efeitos dos fármacos , Radioisótopos de Fósforo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
6.
Arch Toxicol ; 86(2): 217-30, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21863293

RESUMO

We studied the effect of different concentrations of diphenyl ditelluride (PhTe)(2) on the in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and neurofilament (NF) subunits from cerebral cortex and hippocampus of rats during development. (PhTe)(2)-induced hypophosphorylation of GFAP and NF subunits only in cerebral cortex of 9- and 15-day-old animals but not in hippocampus. Hypophosphorylation was dependent on ionotropic glutamate receptors, as demonstrated by the specific inhibitors 10 µM DL-AP5 and 50 µM MK801, 100 µM CNQX and 100 µM DNQX. Also, 10 µM verapamil and 10 µM nifedipine, two L-voltage-dependent Ca(2+) channels (L-VDCC) blockers; 50 µM dantrolene, a ryanodine channel blocker, and the intracellular Ca(2+) chelator Bapta-AM (50 µM) totally prevented this effect. Results obtained with 0.2 µM calyculin A (PP1 and PP2A inhibitor), 1 µM Fostriecin a potent protein phosphatase 2A (PP2A) inhibitor, 100 µM FK-506 or 100 µM cyclosporine A, specific protein phosphatase 2B inhibitors, pointed to PP1 as the protein phosphatase directly involved in the hypophosphorylating effect of (PhTe)(2). Finally, we examined the activity of DARPP-32, an important endogenous Ca(2+)-mediated inhibitor of PP1 activity. Western blot assay using anti-DARPP-32, anti-pThr34DARPP-32, and anti-pThr75DARPP-32 antibodies showed a decreased phosphorylation level of the inhibitor at Thr34, compatible with inactivation of protein kinase A (PKA) by pThr75 DARPP-32. Decreased cAMP and catalytic subunit of PKA support that (PhTe)(2) acted on neuron and astrocyte cytoskeletal proteins through PKA-mediated inactivation of DARPP-32, promoting PP1 release and hypophosphorylation of IF proteins of those neural cells. Moreover, in the presence of Bapta, the level of the PKA catalytic subunit was not decreased by (PhTe)(2), suggesting that intracellular Ca(2+) levels could be upstream the signaling pathway elicited by this neurotoxicant and targeting the cytoskeleton.


Assuntos
Derivados de Benzeno/farmacologia , Córtex Cerebral/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Filamentos Intermediários/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Animais , Córtex Cerebral/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Filamentos Intermediários/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 1/metabolismo , Ratos , Transdução de Sinais
7.
Chem Res Toxicol ; 24(10): 1754-64, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21879721

RESUMO

In the present report, we showed that diphenyl ditelluride (PhTe)(2) induced in vitro hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament (NF) subunits in hippocampus of 21 day-old rats. Hyperphosphorylation was dependent on L-voltage dependent Ca(2+) channels (L-VDCC), N-methyl-d-aspartate (NMDA) and metabotropic glutamate receptors, as demonstrated by the specific inhibitors verapamil, DL-AP5 and MCPG, respectively. Also, dantrolene, a ryanodine channel blocker, EGTA and Bapta-AM, extra and intracellular Ca(2+) chelators respectively, totally prevented this effect. Activation of metabotropic glutamate receptors by (PhTe)(2) upregulates phospholipase C (PLC), producing inositol 1, 4, 5-trisphosphate (IP(3)) and diacylglycerol (DAG). Therefore, high Ca(2+) levels and DAG directly activate Ca(2+)/calmodulin-dependent protein kinase (PKCaMII) and protein kinase C (PCK), resulting in the hyperphosphorylation of Ser-57 in the carboxyl-terminal tail domain of the low molecular weight NF subunit (NF-L). Also, the activation of Erk1/2, and p38MAPK resulted in hyperphosphorylation of KSP repeats of the medium molecular weight NF subunit (NF-M). It is noteworthy that PKCaMII and PKC inhibitors prevented (PhTe)(2)-induced Erk1/2MAPK and p38MAPK activation as well as hyperphosphorylation of KSP repeats on NF-M, suggesting that PKCaMII and PKC could be upstream of this activation. Taken together, our results highlight the role of Ca(2+) as a mediator of the (PhTe)(2)-elicited signaling targeting specific phosphorylation sites on IF proteins of neural cells of rat hippocampus. Interestingly, this action shows a significant cross-talk among signaling pathways elicited by (PhTe)(2), connecting glutamate metabotropic cascade with activation of Ca(2+) channels. The extensively phosphorylated amino- and carboxyl- terminal sites could explain, at least in part, the neural dysfunction associated with (PhTe)(2) exposure.


Assuntos
Derivados de Benzeno/toxicidade , Cálcio/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Compostos Organometálicos/toxicidade , Vimentina/metabolismo , Animais , Benzilaminas/farmacologia , Western Blotting , Canais de Cálcio Tipo L/metabolismo , Córtex Cerebral/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Eletroforese em Gel de Poliacrilamida , Hipocampo/metabolismo , Técnicas In Vitro , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Estaurosporina/farmacologia , Sulfonamidas/farmacologia
8.
Neurotox Res ; 39(2): 327-334, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33196952

RESUMO

Since proline metabolism has been implicated to play an underlying role in apoptotic signaling and cancer, and hyperprolinemic patients present susceptibility to tumors development, this study investigated the effect of proline on cell death, cell cycle, antioxidant enzymes activities, and immunocontent/activity of proteins involved in cell death/survival signaling pathways in C6 glioma cells. C6 cells were incubated with proline (0-5 mM) for 1 h, 24 h, 48 h, 72 h, or 7 days. Proline in high concentrations slightly decreased LDH release, and no cytotoxic effect was seen by Annexin-PI staining. Superoxide dismutase and catalase activities were increased by proline (1 mM) after 72 h, suggesting an increase in reactive species levels. Acetylcholinesterase activity was inhibited by proline at 1, 3, and 5 mM. The cell cycle progression was not altered. Results from Western blot analyses showed that proline at 1 mM after 72 h increased p-NF-ĸB and decreased acetylcholinesterase immunocontent but did not altered AKT, p-AKT, GSK3ß, and p-GSK3ß. Taken together, the data suggest that high proline levels seems to favor the signaling pathways towards cell proliferation, since acetylcholinesterase, which may act as tumor suppressor, is inhibited by proline. Also, p-NF-κB is increased by proline treatment and its activation is related to tumor cell proliferation and cellular response to oxidants. Proline also induced oxidative stress, but it appears to be insufficient to induce a significant change in cell cycle progression. These data may be related, at least in part, to the increased susceptibility to tumor development in hyperprolinemic individuals.


Assuntos
Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prolina/administração & dosagem , Prolina/metabolismo , Animais , Linhagem Celular Tumoral , Ratos , Transdução de Sinais
9.
Front Psychiatry ; 12: 701408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421682

RESUMO

Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.

10.
Cell Mol Neurobiol ; 30(4): 557-68, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19937110

RESUMO

In this study, we investigated the actions of high homocysteine (Hcy) levels (100 and 500 microM) on the cytoskeleton of C6 glioma cells. Results showed that the predominant cytoskeletal response was massive formation of actin-containing filopodia at the cell surface that could be related with Cdc42 activation and increased vinculin immunocontent. In cells treated with 100 microM Hcy, folic acid, trolox, and ascorbic acid, totally prevented filopodia formation, while filopodia induced by 500 microM Hcy were prevented by ascorbic acid and attenuated by folic acid and trolox. Moreover, competitive NMDA ionotropic antagonist DL-AP5 totally prevented the formation of filopodia in both 100 and 500 microM Hcy treated cells, while the metabotropic non-selective group I/II antagonist MCPG prevented the effect of 100 microM Hcy but only slightly attenuated the effect induced by of 500 microM Hcy on actin cytoskeleton. The competitive non-NMDA ionotropic antagonist CNQX was not able to prevent the effects of Hcy on the reorganization of actin cytoskeleton in the two concentrations used. Also, Hcy-induced hypophosphorylation of vimentin and glial fibrillary acidic protein (GFAP) and this effect was prevented by DL-AP5, MCPG, and CNQX. In conclusion, our results show that Hcy target the cytoskeleton of C6 cells probably by excitoxicity and/or oxidative stress mechanisms. Therefore, we could propose that the dynamic restructuring of the actin cytoskeleton of glial cells might contribute to the response to the injury provoked by elevated Hcy levels in brain.


Assuntos
Actinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Homocisteína/farmacologia , Filamentos Intermediários/metabolismo , Neuroglia/citologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Linhagem Celular , Cromanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Fólico/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fosforilação , Ratos , Vimentina/metabolismo , Complexo Vitamínico B/farmacologia
11.
Int J Dev Neurosci ; 26(5): 447-55, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18406095

RESUMO

Homocysteine is considered to be neurotoxic and a risk factor for neurodegenerative diseases. Despite the increasing evidences of excitotoxic mechanisms of homocysteine (Hcy), little is known about the action of Hcy on the cytoskeleton. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of Hcy on cytoskeletal phosphorylation in cerebral cortex and hippocampus of rats during development. Results showed that 100 microM Hcy increased the intermediate filament (IF) phosphorylation only in 17-day-old rat hippocampal slices without affecting the cerebral cortex from 9- to 29-day-old animals. Stimulation of (45)Ca(2+) uptake supported the involvement of NMDA receptors and voltage-dependent channels in extracellular Ca(2+) flux, as well as Ca(2+) release from intracellular stores through inositol-3-phosphate and ryanodine receptors. Moreover, the mechanisms underlying the Hcy effect on hippocampus cytoskeleton involved the participation of phospholipase C, protein kinase C, mitogen-activated protein kinase, phosphoinositol-3 kinase and calcium/calmodulin-dependent protein kinase II. The Hcy-induced IF hyperphosphorylation was also related to G(i) protein and inhibition of cAMP levels. These findings demonstrate that Hcy at a concentration described to induce neurotoxicity activates the IF-associated phosphorylating system during development in hippocampal slices of rats through different cell signaling mechanisms. These results probably suggest that hippocampal rather than cortical cytoskeleton is susceptible to neurotoxical concentrations of Hcy during development and this could be involved in the neural damage characteristic of mild homocystinuric patients.


Assuntos
Cálcio/metabolismo , Citoesqueleto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Homocisteína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Benzilaminas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Flavonoides/farmacologia , Hipocampo/metabolismo , Fosfatos de Inositol/metabolismo , Filamentos Intermediários/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Estaurosporina/farmacologia , Sulfonamidas/farmacologia , Fosfolipases Tipo C/metabolismo
12.
Neurotoxicology ; 29(1): 40-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17928058

RESUMO

In this work, we investigated the effect of a single subcutaneous injection of diphenyl ditelluride (PheTe)(2) in 15-day-old Wistar rats (0.3 micromol/kg body weight) on the phosphorylation of intermediate filament (IF) proteins in cerebral cortex and hippocampus, 1, 3 or 6 days after injection. Results showed that 3 and 6 days after injection with (PheTe)(2), animals presented loss of body weight and cortical hyperphosphorylation of neurofilament subunits, glial fibrillary acidic protein (GFAP) and vimentin (Vim), the neuronal and glial intermediate filaments, respectively. Otherwise, in hippocampus, only GFAP and Vim were hyperphosphorylated and this effect was evidenced 6 days after injection. In cerebral cortex, hyperphosphorylation was accompanied by increased immunocontent of these proteins both in tissue homogenate and in cytoskeletal fraction, while in hippocampus only the immunocontent of cytoskletal-associated GFAP was increased. Moreover, hyperphosphorylation of cortical IF proteins, induced by (PheTe)(2), was totally reversed by a single subcutaneous injection of diphenyl diselenide (PheSe)(2) (5mumol/kg body weight) 24h after (PheTe)(2) administration. Taken together, our results suggest that cortical cytoskeleton is more susceptible to (PheTe)(2) than hippocampal cytoskeleton. Moreover, cytoskeletal dysfunction in cortical and hippocampal cells could be involved in the neurotoxicity induced by acute treatment with (PheTe)(2).


Assuntos
Derivados de Benzeno/farmacologia , Córtex Cerebral/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Hipocampo/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Fosforilação/efeitos dos fármacos , Radioisótopos/metabolismo , Ratos , Fatores de Tempo , Vimentina/metabolismo
13.
Int J Dev Neurosci ; 25(3): 181-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17317075

RESUMO

In the present study, we investigated the effects of the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which accumulate in maple syrup urine disease (MSUD), on C6 glioma cell morphology and cytoskeletal reorganization by exposing the cultured cells to 1 and 5 mM BCAA. We observed that cells showed a fusiform shape with processes after 3 h treatment. Cell death was also observed when cells were incubated in the presence of the BCAA for 3 and 24 h. Val-treated cells presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. Although phosphorylation regulates intermediate filament (IF) assembly/disassembly, we verified that the BCAA did not change the in vitro phosphorylation of IF proteins either in C6 cells or in slices of cerebral cortex of rats during development (9-, 12-, 17- and 21-day-old). Furthermore, we observed that 3 h cell exposure to 5 mM of each BCAA resulted in a marked reduction of reduced glutathione (GSH) levels and significantly increased nitric oxide production. Finally, we observed that the morphological features caused by the BCAA on C6 cells were prevented by the use of the antioxidants GSH (1 mM) and N(omega)-nitro-L-arginine methyl ester (L-NAME, 0.5 mM). On the basis of the present results, we conclude that free radical attack might be involved in the cell morphological alterations, as well as, in the cytoskeletal reorganization elicited by the BCAA. It is therefore presumed that these findings could be involved in the neuropathological features observed in patients affected by MSUD.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glioma/metabolismo , Glioma/patologia , Actinas/metabolismo , Fatores Etários , Aminoácidos de Cadeia Ramificada/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Cerebelo/citologia , Cerebelo/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
14.
Mol Neurobiol ; 54(1): 423-436, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26742520

RESUMO

Accumulating evidences indicate that endogenous modulators of excitatory synapses in the mammalian brain are potential targets for treating neuropsychiatric disorders. Indeed, glutamatergic and adenosinergic neurotransmissions were recently highlighted as potential targets for developing innovative anxiolytic drugs. Accordingly, it has been shown that guanine-based purines are able to modulate both adenosinergic and glutamatergic systems in mammalian central nervous system. Here, we aimed to investigate the potential anxiolytic-like effects of guanosine and its effects on the adenosinergic and glutamatergic systems. Acute/systemic guanosine administration (7.5 mg/kg) induced robust anxiolytic-like effects in three classical anxiety-related paradigms (elevated plus maze, light/dark box, and round open field tasks). These guanosine effects were correlated with an enhancement of adenosine and a decrement of glutamate levels in the cerebrospinal fluid. Additionally, pre-administration of caffeine (10 mg/kg), an unspecific adenosine receptors' antagonist, completely abolished the behavioral and partially prevented the neuromodulatory effects exerted by guanosine. Although the hippocampal glutamate uptake was not modulated by guanosine (both ex vivo and in vitro protocols), the synaptosomal K+-stimulated glutamate release in vitro was decreased by guanosine (100 µM) and by the specific adenosine A1 receptor agonist, 2-chloro-N 6-cyclopentyladenosine (CCPA, 100 nM). Moreover, the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM) fully reversed the inhibitory guanosine effect in the glutamate release. The pharmacological modulation of A2a receptors has shown no effect in any of the evaluated parameters. In summary, the guanosine anxiolytic-like effects seem closely related to the modulation of adenosinergic (A1 receptors) and glutamatergic systems.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/metabolismo , Ansiolíticos/uso terapêutico , Ácido Glutâmico/metabolismo , Guanosina/uso terapêutico , Receptor A1 de Adenosina/metabolismo , Animais , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Guanosina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Wistar
15.
Artigo em Inglês | MEDLINE | ID: mdl-28223107

RESUMO

Major depressive disorder (MDD) is a neuropsychiatric disease that is associated with profound disturbances in affected individuals. Elucidating the pathophysiology of MDD has been frustratingly slow, especially concerning the neurochemical events and brain regions associated with disease progression. Thus, we evaluated the time-course (up to 8weeks) behavioral and biochemical effects in mice that underwent to a bilateral olfactory bulbectomy (OBX), which is used to modeling depressive-like behavior in rodents. Similar to the symptoms in patients with MDD, OBX induced long-lasting (e.g., impairment of habituation to novelty, hyperactivity and an anxiety-like phenotype) and transient (e.g., loss of self-care and motivational behavior) behavioral effects. Moreover, OBX temporarily impaired hippocampal synaptosomal mitochondria, in a manner that would be associated with hippocampal-related synaptotoxicity. Finally, long-lasting pro-oxidative (i.e., increased levels of reactive oxygen species and nitric oxide and decreased glutathione levels) and pro-inflammatory (i.e., increased levels of pro-inflammatory cytokines IL-1, IL-6, TNF-α and decreased anti-inflammatory cytokine IL-10 levels) effects were induced in the hippocampus by OBX. Additionally, these parameters were transiently affected in the posterior and frontal cortices. This study is the first to suggest that the transient and long-lasting behavioral effects from OBX strongly correlate with mitochondrial, oxidative and inflammatory parameters in the hippocampus; furthermore, these effects show a weak correlation with these parameters in the cortex. Our findings highlight the underlying mechanisms involved in the biochemical time course of events related to depressive behavior.


Assuntos
Comportamento Animal/fisiologia , Transtorno Depressivo Maior , Hipocampo , Inflamação , Bulbo Olfatório/cirurgia , Animais , Transtorno Depressivo Maior/imunologia , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Modelos Animais de Doenças , Hipocampo/imunologia , Hipocampo/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Neurotox Res ; 32(2): 276-290, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28429309

RESUMO

Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2',7'-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.


Assuntos
Ácido 2-Aminoadípico/farmacologia , Adipatos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Fígado/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos Multienzimáticos/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Sinapses/efeitos dos fármacos , Trítio/metabolismo
17.
Biochim Biophys Acta ; 1740(3): 460-6, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15949715

RESUMO

We have previously described that propionic (PA) and methylmalonic (MMA) acids increased the in vitro phosphorylation of cytoskeletal proteins through cAMP-dependent protein kinase and glutamate. In the present study we investigated the in vitro effects of 1 mM glutamate, 2.5 mM MMA and 2.5 mM PA on cAMP levels in the slices of cerebral cortex of young rats. Results showed that PA, MMA and glutamate increased cAMP levels after 30 min of incubation, while the beta-adrenergic agonist epinephrine elicited a similar effect only at a shorter incubation time. Then effects were prevented by the beta-adrenergic antagonist propranolol, rather than by glutamate antagonists (AP5, CNQX and MCPG), suggesting that they were mediated by beta-adrenergic receptors. In addition, glutamate antagonists per se induced increased cAMP levels; however propranolol prevented only the effect elicited by the metabotropic glutamate antagonist MCPG. Taken together, it is feasible that PA and MMA increase cAMP synthesis via a beta-adrenergic/G protein coupled pathway, in a glutamate-dependent manner. Although additional studies will be necessary to evaluate the importance of these observations for the neuropathology of propionic and methylmalonic acidemias, it is possible that high brain cAMP levels may contribute to a certain extent to the neurological dysfunction of the affected individuals.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Córtex Cerebral/efeitos dos fármacos , AMP Cíclico/metabolismo , Glicina/análogos & derivados , Ácido Metilmalônico/farmacologia , Propionatos/farmacologia , Análise de Variância , Animais , Córtex Cerebral/metabolismo , Epinefrina/farmacologia , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Propranolol/farmacologia , Ratos , Ratos Wistar
18.
Mol Neurobiol ; 53(2): 1065-1079, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579384

RESUMO

Hyperprolinemias are inherited disorder of proline (Pro) metabolism. Patients affected may present neurological manifestations, but the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering that the astrocytes are important players in neurological disorders, the aim of the present work was to study the effects 1 mM Pro on glutamatergic and inflammatory parameters in cultured astrocytes from cerebral cortex of rats, exploring some molecular mechanisms underlying the disrupted homeostasis of astrocytes exposed to this toxic Pro concentration. We showed that cortical astrocytes of rats exposed to 1 mM Pro presented significantly elevated extracellular glutamate and glutamine levels, suggesting glutamate excitotoxicity. The excess of glutamate elicited by Pro together with increased glutamate uptake and upregulated glutamine synthetase (GS) activity supported misregulated glutamate homeostasis in astrocytic cells. High Pro levels also induced production/release of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6. We also evidenced misregulation of cholinergic anti-inflammatory system with increased acetylcholinesterase (AChE) activity and decreased acetylcholine (ACh) levels, contributing to the inflammatory status in Pro-treated astrocytes. Our findings highlighted a crosstalk among disrupted glutamate homeostasis, cholinergic mechanisms, and inflammatory cytokines, since ionotropic (DL-AP5 and CNQX) and metabotropic (MCPG and MPEP) glutamate antagonists were able to restore the extracellular glutamate and glutamine levels; downregulate TNFα and IL6 production/release, modulate GS and AChE activities; and restore ACh levels. Otherwise, the non-steroidal anti-inflammatory drugs nimesulide, acetylsalicylic acid, ibuprofen, and diclofenac sodium decreased the extracellular glutamate and glutamine levels, downregulated GS and AChE activities, and restored ACh levels in Pro-treated astrocytes. Altogether, our results evidence that the vulnerability of metabolic homeostasis in cortical astrocytes might have important implications in the neurotoxicity of Pro.


Assuntos
Astrócitos/metabolismo , Colina/metabolismo , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Prolina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Citocinas/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Ratos Wistar
19.
Alcohol ; 49(7): 665-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26314629

RESUMO

Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.


Assuntos
Depressores do Sistema Nervoso Central/toxicidade , Citoesqueleto/efeitos dos fármacos , Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Lactação , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ingestão de Energia/efeitos dos fármacos , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/embriologia , Homeostase , Filamentos Intermediários/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Fosforilação , Gravidez , Ratos , Ratos Wistar
20.
Brain Res Dev Brain Res ; 139(2): 267-76, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12480141

RESUMO

In this study we investigated the effects of alpha-ketoisocaproic acid (KIC), the main keto acid accumulating in the inherited neurometabolic disorder maple syrup urine disease (MSUD), on the in vitro incorporation of 32P into intermediate filament (IF) proteins from cerebral cortex of rats during development. KIC decreased the in vitro incorporation of 32P into the IF proteins studied up to day 12, had no effect on day 15, and increased this phosphorylation in cortical slices of 17- and 21-day-old rats. A similar effect on IF phosphorylation was achieved along development by incubating cortical slices with glutamate. Furthermore, the altered phosphorylation caused by the presence of KIC in the incubation medium was mediated by the ionotropic receptors NMDA, AMPA and kainate up to day 12 and by NMDA and AMPA in tissue slices from 17- and 21-day-old rats. The results suggest that alterations of IF phosphorylation may be associated with the neuropathology of MSUD.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Filamentos Intermediários/efeitos dos fármacos , Cetoácidos/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Proteínas de Filamentos Intermediários/efeitos dos fármacos , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/metabolismo , Cetoácidos/farmacologia , Doença da Urina de Xarope de Bordo/fisiopatologia , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Receptores de Ácido Caínico/efeitos dos fármacos , Receptores de Ácido Caínico/metabolismo , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vimentina/efeitos dos fármacos , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA