Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 250: 118537, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408627

RESUMO

E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 µg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.


Assuntos
Poeira , Resíduo Eletrônico , Éteres Difenil Halogenados , Exposição Ocupacional , Bifenilos Policlorados , Reciclagem , Humanos , Poeira/análise , Exposição Ocupacional/análise , Europa (Continente) , Resíduo Eletrônico/análise , Éteres Difenil Halogenados/sangue , Éteres Difenil Halogenados/análise , Adulto , Masculino , Pessoa de Meia-Idade , Bifenilos Policlorados/sangue , Bifenilos Policlorados/análise , Feminino , Poluentes Orgânicos Persistentes/sangue , Silicones , Monitoramento Ambiental/métodos
2.
Arch Toxicol ; 98(2): 425-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147116

RESUMO

Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.


Assuntos
Micotoxinas , Perileno , Humanos , Alternaria/metabolismo , Micotoxinas/toxicidade , Micotoxinas/análise , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Lactonas/toxicidade , Lactonas/metabolismo , Medição de Risco , Contaminação de Alimentos/análise
3.
Environ Res ; 204(Pt A): 111984, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34492275

RESUMO

Exposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Monitoramento Biológico , Cromatos , Cromo/análise , Estudos Transversais , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise
4.
Adv Exp Med Biol ; 1357: 225-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583647

RESUMO

An exponential increase in products containing titanium dioxide nanomaterials (TiO2), in agriculture, food and feed industry, lead to increased oral exposure to these nanomaterials (NMs). Thus, the gastrointestinal tract (GIT) emerges as a possible route of exposure that may drive systemic exposure, if the intestinal barrier is surpassed. NMs have been suggested to produce adverse outcomes, such as genotoxic effects, that are associated with increased risk of cancer, leading to a concern for public health. However, to date, the differences in the physicochemical characteristics of the NMs studied and other variables in the test systems have generated contradictory results in the literature. Processes like human digestion may change the NMs characteristics, inducing unexpected toxic effects in the intestine. Using TiO2 as case-study, this chapter provides a review of the works addressing the interactions of NMs with biological systems in the context of intestinal tract and digestion processes, at cellular and molecular level. The knowledge gaps identified suggest that the incorporation of a simulated digestion process for in vitro studies has the potential to improve the model for elucidating key events elicited by these NMs, advancing the nanosafety studies towards the development of an adverse outcome pathway for intestinal effects.


Assuntos
Nanoestruturas , Titânio , Trato Gastrointestinal/metabolismo , Humanos , Intestinos , Nanoestruturas/química , Nanoestruturas/toxicidade , Titânio/química , Titânio/toxicidade
5.
Adv Exp Med Biol ; 1357: 415-439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583654

RESUMO

Nanomaterials (NMs) have important and useful applications in chemical industry, electronics, pharmaceuticals, food and others. Their rapid proliferation presents a dilemma to regulators regarding hazard identification and increased concerns for public health.The Adverse Outcome Pathways (AOPs) are innovative central elements of a toxicological knowledge framework, developed for supporting chemical risk assessment based on mechanistic reasoning. AOPs describe a sequence of causally linked events at different levels of biological organisation, triggered by exposure to a stressor (like chemicals or NMs) leading to an adverse health effect in humans or wildlife. The integrative analysis of the cellular and molecular mechanisms of nanotoxicity towards the identification of connected adverse outcomes drives a sequential line - an AOP landscape definition. Each defined AOP is available for crossing data, linking known and unknown landscapes, reducing the reliance on animal studies, associated costs and ethical issues. NMs have unique properties, with specific associated toxicological challenges, which may represent unknown AOP landscapes.In this chapter, an overview of AOPs as important novel strategic tools in nanotoxicology is presented, highlighting the current applications in hazard identification and human health risk assessment.


Assuntos
Rotas de Resultados Adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nanoestruturas , Animais , Nanoestruturas/toxicidade , Medição de Risco
6.
Adv Exp Med Biol ; 1357: 351-375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583651

RESUMO

For safety assessment of nanomaterials (NMs), in vitro genotoxicity data based on well-designed experiments is required. Metal-based NMs are amongst the most used in consumer products. In this chapter, we report results for three metal-based NMs, titanium dioxide (NM-100), cerium dioxide (NM-212) and silver (NM-302) in V79 cells, using a set of in vitro genotoxicity assays covering different endpoints: the medium-throughput comet assay and its modified version (with the enzyme formamidopyrimidine DNA glycosylase, Fpg), measuring DNA strand beaks (SBs) and oxidized purines, respectively; the micronucleus (MN) assay, assessing chromosomal damage; and the Hprt gene mutation test. The results generated by this test battery showed that all NMs displayed genotoxic potential. NM-100 induced DNA breaks, DNA oxidation damage and point mutations but not chromosome instability. NM-212 increased the level of DNA oxidation damage, point mutations and increased the MN frequency at the highest concentration tested. NM-302 was moderately cytotoxic and induced gene mutations, but not DNA or chromosome damage. In conclusion, the presented in vitro genotoxicity testing strategy allowed the identification of genotoxic effects caused by three different metal-based NMs, raising concern as to their impact on human health. The results support the use of this in vitro test battery for the genotoxicity assessment of NMs, reducing the use of more expensive, time-consuming and ethically demanding in vivo assays, in compliance with the 3 R's.


Assuntos
Benchmarking , Nanoestruturas , Animais , Ensaio Cometa/métodos , DNA , Dano ao DNA , Humanos , Testes de Mutagenicidade/métodos , Nanoestruturas/toxicidade
7.
Environ Res ; 197: 110998, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713715

RESUMO

A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, ß-2-microglobulin (B2-MG) and N-acetyl-ß-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.


Assuntos
Monitoramento Biológico , Cádmio , Biomarcadores , Cádmio/toxicidade , Cromo/toxicidade , Europa (Continente) , Humanos
8.
Environ Res ; 177: 108583, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31330491

RESUMO

The EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. Within its remit, the project is gathering new, policy relevant, EU-wide data on occupational exposure to relevant priority chemicals and developing new approaches for occupational biomonitoring. In this manuscript, the hexavalent chromium [Cr(VI)] study design is presented as the first example of this HBM4EU approach. This study involves eight European countries and plans to recruit 400 workers performing Cr(VI) surface treatment e.g. electroplating or stainless steel welding activities. The aim is to collect new data on current occupational exposure to Cr(VI) in Europe and to test new methods for Cr biomonitoring, specifically the analysis of Cr(VI) in exhaled breath condensate (EBC) and Cr in red blood cells (RBC) in addition to traditional urinary total Cr analyses. Furthermore, exposure data will be complemented with early biological effects data, including genetic and epigenetic effects. Personal air samples and wipe samples are collected in parallel to help informing the biomonitoring results. We present standard operational procedures (SOPs) to support the harmonized methodologies for the collection of occupational hygiene and HBM samples in different countries.


Assuntos
Poluentes Ocupacionais do Ar , Cromo , Exposição Ocupacional , Monitoramento Biológico , Monitoramento Ambiental , Europa (Continente) , Humanos
9.
J Toxicol Environ Health A ; 82(9): 526-536, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242819

RESUMO

Plasticizers are currently present in many consumer products, particularly food packaging, children's toys, and medical devices. There are concerns regarding potential leaching to environment or food, thus increasing the risk of human exposure by inhalation, ingestion and/or dermal absorption potentially leading to adverse health consequences. Hexamoll diisononyl cyclohexane-1,2-dicarboxylate (Hexamoll® DINCH®), a non-phthalate plasticizer, has been used as a safer alternative to hazardous phthalates. In contrast to phthalates, evidence indicates that DINCH did not produce endocrine disruption, reproductive dysfunctions, genotoxicity or mutagenicity. However, there are limited data available regarding safety assessment, especially with respect to genotoxicity in human cells. The aim of this study was to assess DINCH cytotoxic and genotoxic effects in human liver and kidney cell lines following several exposure periods. For this purpose, the MTT cell viability, micronucleus, conventional and formamidopyrimidine DNA glycosylase (FPG)-modified comet assays were employed to detect cell death and genotoxicity, respectively. Data demonstrated that DINCH induced cytotoxicity in kidney cells exposed for 48hr, but not in liver cells. No marked chromosomal damage was noted after short-term or longer following treatment of both cell lines. However, DINCH produced oxidative DNA damage in liver cells exposed for 3 h, which decreased after a more prolonged incubation period. The occurrence of oxidative lesions, even transiently, indicates that mutation fixation may occur leading to adverse effects in liver. Therefore, these findings suggest that DINCH may be hazardous to humans and that further investigation is necessary to warrant its safety.


Assuntos
Ácidos Cicloexanocarboxílicos/toxicidade , Ácidos Dicarboxílicos/toxicidade , Poluentes Ambientais/toxicidade , Plastificantes/toxicidade , Células Hep G2 , Humanos , Testes de Mutagenicidade
10.
Adv Exp Med Biol ; 1048: 123-142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29453536

RESUMO

The manufactured nanomaterials (NMs) have specific physicochemical properties that confer unique mechanical, optical, electrical and magnetic characteristics that are beneficial for biomedical and industrial applications. However, recent studies have suggested that such specific physicochemical properties of the NMs may define nano-bio interactions thereby determining their toxic potential.One of the major concerns about NMs is the potential to induce cancer, suggested by some experimental studies, as seen for titanium dioxide nanomaterials or carbon nanotubes. To analyze in a short term the carcinogenic properties of a compound, genotoxicity assays in mammalian cell lines or animal models are frequently used. However, the investigation of the genotoxic properties of NMs has been inconclusive, up to date, since divergent results have been reported throughout the literature. While trying to understand how the NMs' characteristics may encompass increased toxicological effects that harbor uncertainties for public health, the use of correlation analysis highlights some physicochemical properties that influence the genotoxic potential of these NM.In this chapter, it is hypothesized that the different genotoxicity observed in closely related NMs may be due to subtle differences in their physicochemical characteristics. The present work provides an overview of the studies exploring the correlation between physicochemical properties of nanomaterials and their genotoxic effects in human cells, with focus on the toxicity of two groups of NMs, titanium dioxide nanomaterials and multiwalled-carbon nanotubes. It is suggested that, for tackling NMs' uncertainties, the in-depth investigation of the nano-bio interactions must be foreseen, where in vitro research must be integrated with in vivo and biomonitoring approaches, to cope with the complex dynamic behaviour of nanoscale materials.


Assuntos
Dano ao DNA , Nanopartículas , Nanotubos de Carbono , Titânio , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Titânio/química , Titânio/toxicidade
12.
J Toxicol Environ Health A ; 78(9): 559-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25965191

RESUMO

Estuaries may be reservoirs of a wide variety of pollutants, including mutagenic and carcinogenic substances that may impact on the ecosystem and human health. A previous study showed that exposure of human hepatoma (HepG2) cells to extracts from sediment samples collected in two areas (urban/industrial and riverine/agricultural) of an impacted estuary (Sado, Portugal), produced differential cytotoxic and genotoxic effects. Those effects were found to be consistent with levels and nature of sediment contamination. The present study aimed at evaluating whether the mixtures of contaminants contained in those extracts were able to modulate DNA repair capacity of HepG2 cells. The residual level of DNA damage was measured by the comet assay in cells exposed for 24 or 48 h to different extracts, after a short preexposure to a challenging concentration range of ethyl methanesulfonate (EMS), as a model alkylating agent. The results suggested that the mixture of contaminants present in the tested samples, besides a potential direct effect on the DNA molecule, may also interfere with DNA repair mechanisms in HepG2 cells, thus impairing their ability to deal with genotoxic stress and, possibly, facilitating accumulation of mutations. Humans are environmentally/occupationally exposed to mixtures rather than to single chemicals. Thus, the observation that estuarine contaminants induce direct and indirect DNA strand breakage in human cells, the latter through the impairment of DNA repair, raises additional concerns regarding potential hazards from exposure and the need to further explore these endpoints in the context of environmental risk assessment.


Assuntos
Reparo do DNA/efeitos dos fármacos , Exposição Ambiental , Metanossulfonato de Etila/toxicidade , Poluentes Químicos da Água/toxicidade , Ensaio Cometa , Dano ao DNA , Estuários , Sedimentos Geológicos/análise , Células Hep G2 , Humanos , Portugal
13.
Foods ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38890918

RESUMO

Considering the increase in the production and use of nanomaterials (NM) in food/feed and food contact materials, novel strategies for efficient and sustainable hazard characterization, especially in the early stages of NM development, have been proposed. Some of these strategies encompass the utilization of in vitro simulated digestion prior to cytotoxic and genotoxic assessment. This entails exposing NM to fluids that replicate the three successive phases of digestion: oral, gastric, and intestinal. Subsequently, the resulting digestion products are added to models of intestinal cells to conduct toxicological assays, analyzing multiple endpoints. Nonetheless, exposure of intestinal cells to the digested products may induce cytotoxicity effects, thereby posing a challenge to this strategy. The aim of this work was to describe the challenges encountered with the in vitro digestion INFOGEST 2.0 protocol when using the digestion product in toxicological studies of NM, and the adjustments implemented to enable its use in subsequent in vitro biological assays with intestinal cell models. The adaptation of the digestion fluids, in particular the reduction of the final bile concentration, resulted in a reduced toxic impact of digestion products.

14.
EFSA J ; 22(3): e8663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469362

RESUMO

Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of 6-phytase produced by the genetically modified strain Aspergillus oryzae DSM 33737 (HiPhorius™ 10, 40, 20L and 50L) as a zootechnical feed additive for all poultry, all Suidae and all fin fish. The FEEDAP Panel concluded that the genetic modification of the production strain does not give rise to safety concerns. Based on the no observed adverse effect level identified in a subchronic oral toxicity study in rats, the additive was considered safe for all poultry, all Suidae and all fin fish at the proposed conditions of use. The Panel also concluded that the use of the product as a feed additive is of no concern for the consumers and the environment. The liquid formulations of the additive are not skin or eye irritants. The two solid ones are not skin irritants but are eye irritants. Owing to the lack of data, the Panel cannot conclude on the skin sensitisation of the final formulations of the additive. Due to the proteinaceous nature of the active substance (6-phytase), the additive is considered a respiratory sensitiser. The Panel concludes that the additive is efficacious when included in the diet of poultry for fattening or reared for laying/breeding, reproductive Suidae, and all fin fish. Due to the lack of sufficient data, the Panel could not conclude on the efficacy for laying and reproductive poultry and growing Suidae.

15.
J Toxicol Environ Health A ; 76(4-5): 311-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514073

RESUMO

In a previous study, evidence was provided that indoor secondhand tobacco smoke (SHS) air pollution remains high in Lisbon restaurants where smoking is allowed, regardless of the protective measures used. The aim of this study was to determine in these locations the levels of polycyclic aromatic hydrocarbons (PAH) associated with the particulate phase of SHS (PPAH), a fraction that contains recognized carginogens, such as benzo[a]pyrene (BaP). Data showed that restaurant smoking areas might contain PPAH levels as high as 110 ng/m(3), a value significantly higher than that estimated for nonsmoking areas (30 ng/m(3)) or smoke-free restaurants (22 ng/m(3)). The effective exposure to SHS components in restaurant smoking rooms was confirmed as cotinine levels found in workers' urine. Considering that all workers exhibited normal lung function, eventual molecular changes in blood that might be associated with occupational exposure to SHS and SHS-associated PPAH were investigated by measurement of two oxidative markers, total antioxidant status (TAS) and 8-hydroxyguanosine (8-OHdG) in plasma and serum, respectively. SHS-exposed workers exhibited higher mean levels of serum 8-OHdG than nonexposed workers, regardless of smoking status. By using a proteomics approach based on 2D-DIGE-MS, it was possible to identify nine differentially expressed proteins in the plasma of SHS-exposed nonsmoker workers. Two acute-phase inflammation proteins, ceruloplasmin and inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), were predominant. These two proteins presented a high number of isoforms modulated by SHS exposure with the high-molecular-weight (high-MW) isoforms decreased in abundance while low-MW isoforms were increased in abundance. Whether these expression profiles are due to (1) a specific proteolytic cleavage, (2) a change on protein stability, or (3) alterations on post-translational modification pattern of these proteins remains to be investigated. Considering that these events seem to precede the first symptoms of tobacco-related diseases, our findings might contribute to elucidation of early SHS-induced pathogenic mechanisms and constitute a useful tool for monitoring the effects of SHS on occupationally exposed individuals such as those working in the hospitality industry.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Antioxidantes/análise , Desoxiguanosina/análogos & derivados , Exposição Ocupacional , Restaurantes , Poluição por Fumaça de Tabaco/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Biomarcadores/análise , Biomarcadores/sangue , Desoxiguanosina/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Portugal , Proteoma/análise , Albumina Sérica/análise , Albumina Sérica Humana , Soroglobulinas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espirometria , Eletroforese em Gel Diferencial Bidimensional
16.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627871

RESUMO

Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.

17.
EFSA J ; 21(2): e07873, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36866191

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of endo-1,4-ß-d-mannanase produced by Thermothelomyces thermophilus DSM 33149 (Natupulse® TS/TS L) as a zootechnical feed additive for chickens and turkeys for fattening, minor poultry species for fattening and ornamental birds. The additive under assessment, Natupulse® TS/TS L, does not pose any safety concern regarding the production strain. The FEEDAP Panel concluded that the additive is tolerated by chickens for fattening, and this conclusion can be extrapolated to all poultry for fattening. Due to the lack of reliable data regarding the potential of the additive to induce chromosomal damage, the FEEDAP Panel cannot conclude on the safety of the additive for the target species and on the safety for consumer. The use of the additive in animal nutrition is considered safe for the environment. The additive is considered not to be irritant to the skin and eyes but is considered a respiratory sensitiser, although exposure by inhalation is unlikely. The Panel could not conclude on the potential of the additive to be a skin sensitiser. Due to the lack of reliable data, the FEEDAP Panel considered that a potential of the additive to induce chromosomal damage in exposed unprotected users cannot be excluded. Consequently, exposure of users should be minimised. The Panel concluded that the additive Natupulse® TS/TS L has the potential to be efficacious in chickens for fattening at the proposed conditions of use and this conclusion can be extrapolated to turkeys for fattening, minor poultry species for fattening and ornamental birds.

18.
Int J Hyg Environ Health ; 248: 114099, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528954

RESUMO

Within the EU human biomonitoring initiative (HBM4EU), a targeted, multi-national study on occupational exposure to hexavalent chromium (Cr(VI)) was performed. Cr(VI) is currently regulated in EU under REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) and under occupational safety and health (OSH) legislation. It has recently been subject to regulatory actions to improve its risk management in European workplaces. Analysis of the data obtained within the HBM4EU chromates study provides support both for the implementation of these regulatory actions and for national enforcement programs and may also contribute to the updating of occupational limit values (OELs) and biological limit values for Cr(VI). It also provides useful insights on the contribution of different risk management measures (RMMs) to further reduce the exposure to Cr(VI) and may support the evaluation of applications for authorisation under REACH. Findings on chrome platers' additional per- and polyfluoroalkyl substances (PFAS) exposure highlight the need to also pay attention to this substance group in the metals sector. A survey performed to evaluate the policy relevance of the HBM4EU chromates study findings supports the usefulness of the study results. According to the responses received from the survey, the HBM4EU chromates study was able to demonstrate the added value of the human biomonitoring (HBM) approach in assessment and management of occupational exposure to Cr(VI). For future occupational studies, we emphasise the need for engagement of policy makers and regulators throughout the whole research process to ensure awareness, relevance and uptake of the results in future policies.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Humanos , Cromatos , Exposição Ocupacional/análise , Cromo/análise , Políticas
19.
EFSA J ; 21(12): e8456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094108

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of zeolites (≥ 50%) obtained from Neapolitan Yellow Tufa as a technological additive (functional group: anticaking) for all animal species. The additive is specified to contain not less than 50% of zeolites, namely phillipsite, chabazite and analcime. Neapolitan Yellow Tufa originates from the volcanic activity of Campi Flegrei, Italy. According to the conventional risk assessment, due to a lack of adequate data, the safety of the additive for the target species cannot be established. Based on current knowledge, there is no indication of substantial absorption of the components of the additive and, therefore, of concern for the consumer. The additive poses a risk by inhalation. It is not irritant to the skin. The Panel cannot conclude on the eye irritancy and on the dermal and respiratory sensitisation potential of the additive. As no suitable data in line with the requirements of the Guidance on risk assessment of nanomaterials were provided by the applicant, the potential risks associated with the presence of nanoparticles for the target species, the consumer and the user could not be assessed. The additive is safe for the environment. The additive is considered to be efficacious in feedingstuffs for all animal species at 20,000 mg/kg complete feed.

20.
EFSA J ; 21(10): e08339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869256

RESUMO

The additive RONOZYME® WX (CT/L) contains endo-1,4-beta-xylanase produced with a genetically modified strain of the filamentous fungus Aspergillus oryzae; the additive is currently authorised for poultry for fattening, weaned piglets, pigs for fattening, lactating sows and laying hens. The applicant has requested to change the production strain, substituting strain A. oryzae DSM 26372 with A. oryzae DSM 33700, and to extend the use of the additive to all poultry species and all Suidae. RONOZYME® WX (CT/L), manufactured with the production strain A. oryzae DSM 33700, did not give rise to safety concerns with regard to the genetic modification of the production strain. No viable cells of the production strain nor its DNA were detected in an intermediate product representative of both final formulations of the additive. RONOZYME® WX (CT/L) was considered safe for all poultry species and all Suidae at the recommended inclusion levels. The use of RONOZYME® WX CT and L manufactured with the production strain A. oryzae DSM 33700 raised no concerns for consumers. RONOZYME® WX L is not an eye irritant; however, no conclusions could be drawn on the potential of RONOZYME® WX CT to be an eye irritant. Both formulations are not irritant to the skin, but due to the lack of data, the FEEDAP Panel was not able to conclude on the potential of both formulations of the additive to be skin sensitisers. Due to the proteinaceous nature of the active substance, the additive is considered a respiratory sensitiser. The additive manufactured by A. oryzae DSM 33700 raises no safety concerns for the environment. The additive has the potential to be efficacious in all poultry species and all Suidae at 100 and 200 FXU/kg complete feed, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA