Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 142(23): 4456-4467, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091083

RESUMO

Antibody-modified gold nanoparticles (AuNPs) are central to many novel and emerging biosensing technologies due to the specificity provided by antibody-antigen interactions and the unique properties of nanoparticles. These AuNP-enabled assays have the potential to provide significant improvements in sensitivity and multiplexed analysis compared to conventional immunoassays. However, a major challenge for these AuNP platform technologies is the synthesis of stable antibody-AuNP conjugates that resist aggregation in high salt environments and biological matrices. Moreover, synthetic strategies to form stable conjugates often require different solution conditions, e.g., pH, for each unique antibody. Herein we describe our effort to develop an approach to chemically modify lysine residues on antibodies to facilitate the formation of stable antibody-AuNP conjugates over a wide pH range. In this work, we systematically investigated the immobilization of native and chemically modified antibodies to 60 nm citrate-capped AuNPs as a function of pH and evaluated the stability of the antibody-AuNP conjugate in a saline environment. We have developed a method to chemically modify the lysine residues on an antibody prior to conjugation to the AuNP that results in stable conjugates over a wide pH range (6.0-8.5). Amino acid analysis and zeta potential measurements of native and modified antibodies reveal that the requisite modification correlates with the number of lysine residues, and a reduction in positive charge contribution from protonated lysine is required to form stable, pH-independent conjugates. Furthermore, we demonstrate that the chemically modified antibodies maintain antigen-binding capabilities. We apply this novel conjugation strategy to develop a surface-enhanced Raman spectroscopy (SERS)-based assay for the accurate subtyping of avian influenza viruses.


Assuntos
Anticorpos/química , Técnicas Biossensoriais , Ouro , Nanopartículas Metálicas , Animais , Galinhas , Cães , Imunoensaio , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A/classificação , Células Madin Darby de Rim Canino , Nanoconjugados
2.
Talanta ; 146: 388-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695280

RESUMO

A simple, rapid, and sensitive immunoassay has been developed based on antigen-mediated aggregation of gold nanoparticles (AuNP) and surface-enhanced Raman spectroscopy (SERS). Central to this platform is the extrinsic Raman label (ERL), which consists of a gold nanoparticle modified with a mixed monolayer of a Raman active molecule and an antibody. ERLs are mixed with sample, and antigen induces the aggregation of the ERLs. A membrane filter is then used to isolate and concentrate the ERL aggregates for SERS analysis. Preliminary work to establish proof-of-principle of the platform technology utilized mouse IgG as a model antigen. The effects of membrane pore diameter and AuNP size on the analytical performance of the assay were systematically investigated, and it was determined that a pore diameter of 200 nm and AuNP diameter of 80 nm provide maximum sensitivity while minimizing signal from blank samples. Optimization of the assay provided a detection limit of 1.9 ng/mL, 20-fold better than the detection limit achieved by an ELISA employing the same antibody-antigen system. Furthermore, this assay required only 60 min compared to 24h for the ELISA. To validate this assay, mouse serum was directly analyzed to accurately quantify IgG. Collectively, these results demonstrate the potential advantages of this technology over current diagnostic tests for protein biomarkers with respect to time, simplicity, and detection limits. Thus, this approach provides a framework for prospective development of new and more powerful tools that can be designed for point-of-care diagnostic or point-of-need detection.


Assuntos
Antígenos/química , Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Animais , Antígenos/imunologia , Imunoglobulina G/sangue , Limite de Detecção , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA