Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 146(3): 396-407, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816275

RESUMO

In E. coli, MinD recruits MinE to the membrane, leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring. How these proteins interact, however, is not clear because the MinD-binding regions of MinE are sequestered within a six-stranded ß sheet and masked by N-terminal helices. minE mutations that restore interaction between some MinD and MinE mutants were isolated. These mutations alter the MinE structure leading to release of the MinD-binding regions and the N-terminal helices that bind the membrane. Crystallization of MinD-MinE complexes revealed a four-stranded ß sheet MinE dimer with the released ß strands (MinD-binding regions) converted to α helices bound to MinD dimers. These results identify the MinD-dependent conformational changes in MinE that convert it from a latent to an active form and lead to a model of how MinE persists at the MinD-membrane surface.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Citocinese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Alinhamento de Sequência
2.
Brain ; 147(5): 1710-1725, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38146639

RESUMO

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Assuntos
Doença de Alzheimer , Isoindóis , Mitocôndrias , Compostos Organosselênicos , Peptidil-Prolil Isomerase F , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Humanos , Cognição/efeitos dos fármacos , Azóis/farmacologia , Azóis/uso terapêutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inibidores , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
3.
Proteins ; 92(4): 554-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041394

RESUMO

NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.


Assuntos
Citocromos b , NAD , Animais , Humanos , Citocromo-B(5) Redutase/química , Oxirredutases , Heme/química
4.
Proteins ; 92(7): 830-841, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372168

RESUMO

Infected cell protein 0 (ICP0) is an immediate-early regulatory protein of herpes simplex virus 1 (HSV-1) that possesses E3 ubiquitin ligase activity. ICP0 transactivates viral genes, in part, through its C-terminal dimer domain (residues 555-767). Deletion of this dimer domain results in reduced viral gene expression, lytic infection, and reactivation from latency. Since ICP0's dimer domain is associated with its transactivation activity and efficient viral replication, we wanted to determine the structure of this specific domain. The C-terminus of ICP0 was purified from bacteria and analyzed by X-ray crystallography to solve its structure. Each subunit or monomer in the ICP0 dimer is composed of nine ß-strands and two α-helices. Interestingly, two adjacent ß-strands from one monomer "reach" into the adjacent subunit during dimer formation, generating two ß-barrel-like structures. Additionally, crystallographic analyses indicate a tetramer structure is formed from two ß-strands of each dimer, creating a "stacking" of the ß-barrels. The structural protein database searches indicate the fold or structure adopted by the ICP0 dimer is novel. The dimer is held together by an extensive network of hydrogen bonds. Computational analyses reveal that ICP0 can either form a dimer or bind to SUMO1 via its C-terminal SUMO-interacting motifs but not both. Understanding the structure of the dimer domain will provide insights into the activities of ICP0 and, ultimately, the HSV-1 life cycle.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Multimerização Proteica , Ubiquitina-Proteína Ligases , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Cristalografia por Raios X , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Modelos Moleculares , Humanos , Domínios Proteicos , Dobramento de Proteína , Sequência de Aminoácidos , Conformação Proteica em Folha beta
5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34210738

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , COVID-19/patologia , Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Deutério , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/química , SARS-CoV-2/enzimologia , Ácidos Sulfônicos , Transgenes
6.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474085

RESUMO

Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.


Assuntos
Fácies , Doença de Hirschsprung , Deficiência Intelectual , Microcefalia , Proteínas Repressoras , Feminino , Humanos , Pré-Escolar , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Deficiência Intelectual/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição
7.
Arch Biochem Biophys ; 742: 109612, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146865

RESUMO

Histamine dehydrogenase from the gram-negative bacterium Rhizobium sp. 4-9 (HaDHR) is a member of a small family of dehydrogenases containing a covalently attached FMN, and the only member so far identified to date that does not exhibit substrate inhibition. In this study, we present the 2.1 Å resolution crystal structure of HaDHR. This new structure allowed for the identification of the internal electron transfer pathway to abiological ferrocene-based mediators. Alanine 437 was identified as the exit point of electrons from the Fe4S4 cluster. The enzyme was modified with a Ser436Cys mutation to facilitate covalent attachment of a ferrocene moiety. When modified with Fc-maleimide, this new construct demonstrated direct electron transfer from the enzyme to a gold electrode in a histamine concentration-dependent manner without the need for any additional electron mediators.


Assuntos
Elétrons , Rhizobium , Metalocenos , Transporte de Elétrons , Oxidantes
8.
Nat Chem Biol ; 17(7): 776-783, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33859413

RESUMO

CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Peptídeo Hidrolases/análise , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Peptídeo Hidrolases/metabolismo , Especificidade por Substrato
9.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902100

RESUMO

We report the structural, biochemical, and functional characterization of the product of gene PA0962 from Pseudomonas aeruginosa PAO1. The protein, termed Pa Dps, adopts the Dps subunit fold and oligomerizes into a nearly spherical 12-mer quaternary structure at pH 6.0 or in the presence of divalent cations at neutral pH and above. The 12-Mer Pa Dps contains two di-iron centers at the interface of each subunit dimer, coordinated by conserved His, Glu, and Asp residues. In vitro, the di-iron centers catalyze the oxidation of Fe2+ utilizing H2O2 (not O2) as an oxidant, suggesting Pa Dps functions to aid P. aeruginosa to survive H2O2-mediated oxidative stress. In agreement, a P. aeruginosa Δdps mutant is significantly more susceptible to H2O2 than the parent strain. The Pa Dps structure harbors a novel network of Tyr residues at the interface of each subunit dimer between the two di-iron centers, which captures radicals generated during Fe2+ oxidation at the ferroxidase centers and forms di-tyrosine linkages, thus effectively trapping the radicals within the Dps shell. Surprisingly, incubating Pa Dps and DNA revealed unprecedented DNA cleaving activity that is independent of H2O2 or O2 but requires divalent cations and 12-mer Pa Dps.


Assuntos
Proteínas de Bactérias , Clivagem do DNA , Proteínas de Ligação a DNA , Peróxido de Hidrogênio , Estresse Oxidativo , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Cátions Bivalentes , DNA/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Ligação a DNA/metabolismo
10.
J Biol Chem ; 296: 100628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812994

RESUMO

Catalysis of human phosphoglycerate mutase is dependent on a 2,3-bisphosphoglycerate cofactor (dPGM), whereas the nonhomologous isozyme in many parasitic species is cofactor independent (iPGM). This mechanistic and phylogenetic diversity offers an opportunity for selective pharmacologic targeting of glycolysis in disease-causing organisms. We previously discovered ipglycermide, a potent inhibitor of iPGM, from a large combinatorial cyclic peptide library. To fully delineate the ipglycermide pharmacophore, herein we construct a detailed structure-activity relationship using 280 substituted ipglycermide analogs. Binding affinities of these analogs to immobilized Caenorhabditis elegans iPGM, measured as fold enrichment relative to the index residue by deep sequencing of an mRNA display library, illuminated the significance of each amino acid to the pharmacophore. Using cocrystal structures and binding kinetics, we show that the high affinity of ipglycermide for iPGM orthologs, from Brugia malayi, Onchocerca volvulus, Dirofilaria immitis, and Escherichia coli, is achieved by a codependence between (1) the off-rate mediated by the macrocycle Cys14 thiolate coordination to an active-site Zn2+ in the iPGM phosphatase domain and (2) shape complementarity surrounding the macrocyclic core at the phosphotransferase-phosphatase domain interface. Our results show that the high-affinity binding of ipglycermide to iPGMs freezes these structurally dynamic enzymes into an inactive, stable complex.


Assuntos
Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Fosfoglicerato Mutase/química , Fosfoglicerato Mutase/metabolismo , Animais , Domínio Catalítico , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Relação Estrutura-Atividade
11.
J Am Chem Soc ; 144(49): 22493-22504, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36413626

RESUMO

Pancreatic cancer has the lowest survival rate of all common cancers due to late diagnosis and limited treatment options. Serine hydrolases are known to mediate cancer progression and metastasis through initiation of signaling cascades and cleavage of extracellular matrix proteins, and the kallikrein-related peptidase (KLK) family of secreted serine proteases have emerging roles in pancreatic ductal adenocarcinoma (PDAC). However, the lack of reliable activity-based probes (ABPs) to profile KLK activity has hindered progress in validation of these enzymes as potential targets or biomarkers. Here, we developed potent and selective ABPs for KLK6 by using a positional scanning combinatorial substrate library and characterized their binding mode and interactions by X-ray crystallography. The optimized KLK6 probe IMP-2352 (kobs/I = 11,000 M-1 s-1) enabled selective detection of KLK6 activity in a variety of PDAC cell lines, and we observed that KLK6 inhibition reduced the invasiveness of PDAC cells that secrete active KLK6. KLK6 inhibitors were combined with N-terminomics to identify potential secreted protein substrates of KLK6 in PDAC cells, providing insights into KLK6-mediated invasion pathways. These novel KLK6 ABPs offer a toolset to validate KLK6 and associated signaling partners as targets or biomarkers across a range of diseases.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Calicreínas/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas
12.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33158944

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Assuntos
N-Glicosil Hidrolases/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Coronavirus/química , Coronavirus/enzimologia , Coronavirus/metabolismo , Cristalografia por Raios X , Humanos , Hidrólise , Cinética , N-Glicosil Hidrolases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/química
13.
Arch Biochem Biophys ; 718: 109122, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35063417

RESUMO

Demand exists for a nicotine oxidase enzyme with high catalytic efficiency for a variety of applications including the in vivo detection of nicotine, therapeutic enzymatic blockade of nicotine from the CNS, and inactivation of toxic industrial wastes generated in the manufacture of tobacco products. Nicotine oxidase enzymes identified to date suffer from low efficiency, exhibiting either a high kcat or low Km, but not both. Here we present the crystal structure of the (S)-6-hydroxy-nicotine oxidase from Shinella sp HZN7 (NctB), an enzyme that oxidizes (S)-nicotine with a high kcat (>1 s-1), that possesses remarkable structural and sequence similarity to an enzyme with a nanomolar Km for (S)-nicotine, the (S)-nicotine oxidase from Pseudomonas putidia strain S16 (NicA2). Based on a comparison of our NctB structure and the previously published crystal structure of NicA2, we successfully employed a rational design approach to increase the rate of oxidative turnover of the NicA2 enzyme by ∼25% (0.011 s-1 to 0.014 s-1), and reduce the Km of the NctB protein by approximately 34% (940 µM-622 µM). While modest, these results are a step towards engineering a nicotine oxidase with kinetic parameters that fulfill the functional requirements of biosensing, waste remediation, and therapeutic applications.


Assuntos
Proteínas de Bactérias , Nicotina , Proteínas de Bactérias/química , Cinética , Nicotina/metabolismo , Oxirredução , Pseudomonas
14.
Am J Med Genet A ; 188(2): 579-589, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773373

RESUMO

Variants in the pleckstrin homology domain-interacting protein (PHIP) gene are implicated in the clinical phenotype of Chung-Jansen syndrome, which includes dysmorphic features, cognitive dysfunction, aberrant behavior, and childhood onset obesity. Following a systematic literature review, 35 patients are reported to have unique PHIP variants impacting the encoded protein product. We summarize the status and frequency of these variants and relationship to clinical presentation. We also describe an additional patient with a rare, pathogenic variant due to a five base pair deletion leading to an altered codon at I307 but with a stop codon at 22 codons downstream; notably, a variant was identified at the same location as seen previously at protein position I307 in one other subject and a frameshift change at that protein position. We compare the clinical characteristics between the two patients and analyze whether certain types of gene defects impact clinical presentation in previously reported individuals. In addition, we predict structural protein models, which yielded unique differences between the wild-type and I307P-related mutant truncated proteins. Protein-protein interactions indicate involvement of POMC and related proteins with potential contribution to obesity, congenital, neuromuscular, and lipid disorders with heart, gastrointestinal, and rheumatoid diseases. With its surrounding proline-rich region, the I307P point mutation increases susceptibility to conformational rigidity and thermodynamic stability, ultimately impacting function as well as a stop codon downstream. Furthermore, the frameshift mutation seen in our patient may result in a truncated protein with a short abnormal region prior to the stop codon due to a five base pair deletion at I307 or target the protein for nonsense-mediated mRNA decay.


Assuntos
Mutação da Fase de Leitura , Degradação do RNAm Mediada por Códon sem Sentido , Criança , Mutação da Fase de Leitura/genética , Humanos , Fenótipo
15.
J Am Chem Soc ; 143(23): 8911-8924, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34085829

RESUMO

Kallikrein-related peptidases (KLKs) are a family of secreted serine proteases, which form a network (the KLK activome) with an important role in proteolysis and signaling. In prostate cancer (PCa), increased KLK activity promotes tumor growth and metastasis through multiple biochemical pathways, and specific quantification and tracking of changes in the KLK activome could contribute to validation of KLKs as potential drug targets. Herein we report a technology platform based on novel activity-based probes (ABPs) and inhibitors enabling simultaneous orthogonal analysis of KLK2, KLK3, and KLK14 activity in hormone-responsive PCa cell lines and tumor homogenates. Importantly, we identifed a significant decoupling of KLK activity and abundance and suggest that KLK proteolysis should be considered as an additional parameter, along with the PSA blood test, for accurate PCa diagnosis and monitoring. Using selective inhibitors and multiplexed fluorescent activity-based protein profiling (ABPP), we dissect the KLK activome in PCa cells and show that increased KLK14 activity leads to a migratory phenotype. Furthermore, using biotinylated ABPs, we show that active KLK molecules are secreted into the bone microenvironment by PCa cells following stimulation by osteoblasts suggesting KLK-mediated signaling mechanisms could contribute to PCa metastasis to bone. Together our findings show that ABPP is a powerful approach to dissect dysregulation of the KLK activome as a promising and previously underappreciated therapeutic target in advanced PCa.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/farmacologia , Inibidores Enzimáticos/farmacologia , Calicreínas/antagonistas & inibidores , Antígeno Prostático Específico/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cumarínicos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Calicreínas/metabolismo , Masculino , Estrutura Molecular , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
16.
Mol Microbiol ; 113(1): 68-88, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637787

RESUMO

Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/metabolismo , Ciclo do Ácido Cítrico , Monoéster Fosfórico Hidrolases/química , Proteínas de Bactérias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Domínios Proteicos
17.
Am J Med Genet A ; 185(3): 743-752, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369194

RESUMO

Ehlers-Danlos syndrome (EDS) consists of a heterogeneous group of genetically inherited connective tissue disorders. A family with three affected members over two generations with features of Dermatosparaxic EDS (dEDS) autosomal dominant transmission was reported by Desai et al. and having a heterozygous nonsynonymous missense variant of ADAMTSL2 (c.1261G > A; p. Gly421Ser). Variation in this gene is also reported to cause autosomal recessive geleophysic dysplasia. We report five unrelated patients with the Gly421Ser variant identified from a large series of patients presenting with features of connective tissue disorders, each with a positive family history consistent with autosomal dominant transmission. Clinical features of a connective tissue disorder included generalized joint hypermobility and pain with fragility of internal and external tissues including of skin, dura, and arteries. Overall, our analyses including bioinformatics, protein modeling, and gene-protein interactions with the cases described would add evidence for the Gly421Ser variant in ADAMTSL2 as causative for variable expressivity of autosomal dominant connective tissue disorders.


Assuntos
Proteínas ADAMTS/genética , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/patologia , Heterozigoto , Mutação de Sentido Incorreto , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
18.
Proteins ; 88(4): 573-583, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31603583

RESUMO

Musashi-2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi-1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N-terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2-specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2-RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2-RRM1, and compare these to the structures of MSI1-RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2-RRM1 shows a highly similar overall folding topology to MSI1-RBD1 and other RBPs. The structural information of MSI2-RRM1 will be helpful for understanding MSI2-RNA interaction and for guiding rational drug design of MSI2-specific inhibitors.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas Oncogênicas/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Motivo de Reconhecimento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
19.
J Bacteriol ; 201(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936373

RESUMO

Toxin-antitoxin (TA) gene pairs have been identified in nearly all bacterial genomes sequenced to date and are thought to facilitate persistence and antibiotic tolerance. TA loci are classified into various types based upon the characteristics of their antitoxins, with those in type II expressing proteic antitoxins. Many toxins from type II modules are ribonucleases that maintain a PilT N-terminal (PIN) domain containing conserved amino acids considered essential for activity. The vapBC (virulence-associated protein) TA system is the largest subfamily in this class and has been linked to pathogenesis of nontypeable Haemophilus influenzae (NTHi). In this study, the crystal structure of the VapBC-1 complex from NTHi was determined to 2.20 Å resolution. Based on this structure, aspartate-to-asparagine and glutamate-to-glutamine mutations of four conserved residues in the PIN domain of the VapC-1 toxin were constructed and the effects of the mutations on protein-protein interactions, growth of Escherichia coli, and pathogenesis ex vivo were tested. Finally, a novel model system was designed and utilized that consists of an NTHi ΔvapBC-1 strain complemented in cis with the TA module containing a mutated or wild-type toxin at an ectopic site on the chromosome. This enabled the analysis of the effect of PIN domain toxin mutants in tandem with their wild-type antitoxin under the control of the vapBC-1 native promoter and in single copy. This is the first report of a system facilitating the study of TA mutant operons in the background of NTHi during infections of primary human tissues ex vivoIMPORTANCE Herein the crystal structure of the VapBC-1 complex from nontypeable Haemophilus influenzae (NTHi) is described. Our results show that some of the mutations in the PIN domain of the VapC-1 toxin were associated with decreased toxicity in E. coli, but the mutants retained the ability to homodimerize and to heterodimerize with the wild-type cognate antitoxin, VapB-1. A new system was designed and constructed to quantify the effects of these mutations on NTHi survival during infections of primary human tissues ex vivo Any mutation to a conserved amino acid in the PIN domain significantly decreased the number of survivors compared to that of the in cis wild-type toxin under the same conditions.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Haemophilus influenzae/genética , Sistemas Toxina-Antitoxina , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Cristalização , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/química , Haemophilus influenzae/patogenicidade , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Óperon , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
Proteins ; 87(7): 579-587, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883881

RESUMO

Human noroviruses are the primary cause of outbreaks of acute gastroenteritis worldwide. The problem is further compounded by the current lack of norovirus-specific antivirals or vaccines. Noroviruses have a single-stranded, positive sense 7 to 8 kb RNA genome which encodes a polyprotein precursor that is processed by a virus-encoded 3C-like cysteine protease (NV 3CLpro) to generate at least six mature nonstructural proteins. Processing of the polyprotein is essential for virus replication, consequently, NV 3CLpro has emerged as an attractive target for the discovery of norovirus therapeutics and prophylactics. We have recently described the structure-based design of macrocyclic transition state inhibitors of NV 3CLpro. In order to gain insight and understanding into the interaction of macrocyclic inhibitors with the enzyme, as well as probe the effect of ring size on pharmacological activity and cellular permeability, additional macrocyclic inhibitors were synthesized and high resolution cocrystal structures determined. The results of our studies tentatively suggest that the macrocyclic scaffold may hamper optimal binding to the active site by impeding concerted cross-talk between the S2 and S4 subsites.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Compostos Macrocíclicos/farmacologia , Norovirus/enzimologia , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular , Cristalografia por Raios X , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Gastroenterite/tratamento farmacológico , Gastroenterite/virologia , Humanos , Compostos Macrocíclicos/química , Camundongos , Modelos Moleculares , Norovirus/química , Norovirus/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA