Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2408322121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163340

RESUMO

The circadian clock is an endogenous oscillator, and its importance lies in its ability to impart rhythmicity on downstream biological processes, or outputs. Our knowledge of output regulation, however, is often limited to an understanding of transcriptional connections between the clock and outputs. For instance, the clock is linked to plant growth through the gating of photoreceptors via rhythmic transcription of the nodal growth regulators, PHYTOCHROME-INTERACTING FACTORs (PIFs), but the clock's role in PIF protein stability is less clear. Here, we identified a clock-regulated, F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 (CFH1), that specifically interacts with and degrades PIF3 during the daytime. Additionally, genetic evidence indicates that CFH1 functions primarily in monochromatic red light, yet CFH1 confers PIF3 degradation independent of the prominent red-light photoreceptor phytochrome B (phyB). This work reveals a clock-mediated growth regulation mechanism in which circadian expression of CFH1 promotes sustained, daytime PIF3 degradation in parallel with phyB signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Relógios Circadianos , Fitocromo B , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/fisiologia , Relógios Circadianos/genética , Fitocromo B/metabolismo , Fitocromo B/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ritmo Circadiano/fisiologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Luz
2.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37781622

RESUMO

The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA