Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197082

RESUMO

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Metabolismo dos Carboidratos/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Glicólise/fisiologia , Humanos , Ácido Hialurônico/fisiologia , Hialuronoglucosaminidase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Tristetraprolina/metabolismo , Tristetraprolina/fisiologia
2.
Nature ; 616(7958): 666-667, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076710
3.
J Cell Mol Med ; 26(11): 3183-3195, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543222

RESUMO

BACKGROUND: Vascular dementia (VaD) is the accumulation of vascular lesions in the subcortical white matter of the brain. These lesions progress and there is no direct medical therapy. AIMS: To determine the specific cellular responses in VaD so as to provide molecular targets for therapeutic development. MATERIALS AND METHODS: Single-nucleus transcriptome analysis was performed in human periventricular white matter (PVWM) samples of VaD and normal control (NC) subjects. RESULTS: Differential analysis shows that cell type-specific transcriptomic changes in VaD are associated with the disruption of specific biological processes, including angiogenesis, immune activation, axonal injury and myelination. Each cell type in the neurovascular unit within white matter has a specific alteration in gene expression in VaD. In a central cell type for this disease, subcluster analysis of endothelial cells (EC) indicates that VaD contains a disease-associated EC subcluster that expresses genes associated with programmed cell death and a response to protein folding. Two other subpopulations of EC in VaD express molecular systems associated with regenerative processes in angiogenesis, and in axonal sprouting and oligodendrocyte progenitor cell maturation. CONCLUSION: This comprehensive molecular profiling of brain samples from patients with VaD reveals previously unknown molecular changes in cells of the neurovascular niche, and an attempt at regeneration in injured white matter.


Assuntos
Demência Vascular , Substância Branca , Encéfalo/metabolismo , Demência Vascular/genética , Demência Vascular/patologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Substância Branca/metabolismo , Substância Branca/patologia
4.
Bioinformatics ; 36(21): 5247-5254, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32692836

RESUMO

MOTIVATION: Gene Set Enrichment Analysis (GSEA) is an algorithm widely used to identify statistically enriched gene sets in transcriptomic data. However, GSEA cannot examine the enrichment of two gene sets or pathways relative to one another. Here we present Differential Gene Set Enrichment Analysis (DGSEA), an adaptation of GSEA that quantifies the relative enrichment of two gene sets. RESULTS: After validating the method using synthetic data, we demonstrate that DGSEA accurately captures the hypoxia-induced coordinated upregulation of glycolysis and downregulation of oxidative phosphorylation. We also show that DGSEA is more predictive than GSEA of the metabolic state of cancer cell lines, including lactate secretion and intracellular concentrations of lactate and AMP. Finally, we demonstrate the application of DGSEA to generate hypotheses about differential metabolic pathway activity in cellular senescence. Together, these data demonstrate that DGSEA is a novel tool to examine the relative enrichment of gene sets in transcriptomic data. AVAILABILITY AND IMPLEMENTATION: DGSEA software and tutorials are available at https://jamesjoly.github.io/DGSEA/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Software , Algoritmos , Humanos , Probabilidade , Transcriptoma
5.
Exp Dermatol ; 30(4): 448-456, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33739490

RESUMO

Hair follicle stem cells (HFSCs) are known to be responsible for the initiation of a new hair cycle, but typically remain quiescent for very long periods. In alopecia, or hair loss disorders, follicles can be refractory to activation for years or even permanently. Alopecia can be triggered by autoimmunity, age, chemotherapeutic treatment, stress, disrupted circadian rhythm or other environmental insults. We previously showed that hair follicle stem cells and the hair cycle can be manipulated by regulation of pyruvate entry into mitochondria for subsequent oxidation to fuel the TCA cycle in normal adult mice with typical hair cycling. Here, we present new data from our efforts to develop murine models of alopecia based on environmental triggers that have been shown to do the same in human skin. We found that inhibition of pyruvate transport into mitochondria can accelerate the hair cycle even during refractory hair cycling due to age, repeated chemotherapeutic treatment and stress. Hair cycle acceleration in these alopecia models led to the formation of histologically normal hair follicles within 30-40 days of treatment without any overt signs of toxicity or deleterious effects. Therefore, we propose inhibition of pyruvate entry into mitochondria as a versatile treatment strategy for alopecia in humans.


Assuntos
Alopecia/terapia , Folículo Piloso/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Piruvatos/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos
6.
J Hered ; 112(5): 458-468, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34132805

RESUMO

In North American gray wolves, black coat color is dominantly inherited via a 3 base pair coding deletion in the canine beta defensin 3 (CBD103) gene. This 3 base pair deletion, called the KB allele, was introduced through hybridization with dogs and subsequently underwent a selective sweep that increased its frequency in wild wolves. Despite apparent positive selection, KBB wolves have lower fitness than wolves with the KyB genotype, even though the 2 genotypes show no observable differences in black coat color. Thus, the KB allele is thought to have pleiotropic effects on as-yet unknown phenotypes. Given the role of skin-expressed CBD103 in innate immunity, we hypothesized that the KB allele influences the keratinocyte gene expression response to TLR3 pathway stimulation and/or infection by canine distemper virus (CDV). To test this hypothesis, we developed a panel of primary epidermal keratinocyte cell cultures from 24 wild North American gray wolves of both Kyy and KyB genotypes. In addition, we generated an immortalized Kyy line and used CRISPR/Cas9 editing to produce a KyB line on the same genetic background. We assessed the transcriptome-wide responses of wolf keratinocytes to the TLR3 agonist polyinosinic:polycytidylic acid (polyI:C), and to live CDV. K locus genotype did not predict the transcriptional response to either challenge, suggesting that variation in the gene expression response does not explain pleiotropic effects of the KB allele on fitness. This study supports the feasibility of using cell culture methods to investigate the phenotypic effects of naturally occurring genetic variation in wild mammals.


Assuntos
Vírus da Cinomose Canina , Lobos , Alelos , Animais , Vírus da Cinomose Canina/genética , Cães , Expressão Gênica , Receptor 3 Toll-Like/genética , Lobos/genética
7.
Methods ; 133: 44-53, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864353

RESUMO

Neural progenitor cells hold significant promise in a variety of clinical settings. While both the brain and spinal cord harbor endogenous neural progenitor or stem cells, they typically are not capable of repopulating neural populations in case of injury or degenerative disease. In vitro systems for the culture of neural progenitors has come a long ways due to advances in the method development. Recently, many groups have shown that manipulation of the oxygen-sensing pathway leading to activation of hypoxia inducible factors (HIFs) that can influence the proliferation, differentiation or maturation of neural progenitors. Moreover, different oxygen concentrations appear to affect lineage specification of neural progenitors upon their differentiation in vitro. Here we summarize some of these studies in an attempt to direct effort towards implementation of best methods to advance the use of neural progenitors from basic development towards clinical application.


Assuntos
Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo , Traumatismos da Medula Espinal/metabolismo , Células-Tronco/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Humanos , Fator 1 Induzível por Hipóxia/genética , Células-Tronco Neurais/citologia , Transdução de Sinais/genética , Traumatismos da Medula Espinal/terapia , Células-Tronco/citologia
9.
EMBO J ; 32(10): 1393-408, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23584530

RESUMO

Stem cell differentiation depends on transcriptional activation driven by lineage-specific regulators as well as changes in chromatin organization. However, the coordination of these events is poorly understood. Here, we show that T-box proteins team up with chromatin modifying enzymes to drive the expression of the key lineage regulator, Eomes during endodermal differentiation of embryonic stem (ES) cells. The Eomes locus is maintained in a transcriptionally poised configuration in ES cells. During early differentiation steps, the ES cell factor Tbx3 associates with the histone demethylase Jmjd3 at the enhancer element of the Eomes locus to allow enhancer-promoter interactions. This spatial reorganization of the chromatin primes the cells to respond to Activin signalling, which promotes the binding of Jmjd3 and Eomes to its own bivalent promoter region to further stimulate Eomes expression in a positive feedback loop. In addition, Eomes activates a transcriptional network of core regulators of endodermal differentiation. Our results demonstrate that Jmjd3 sequentially associates with two T-box factors, Tbx3 and Eomes to drive stem cell differentiation towards the definitive endoderm lineage.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Endoderma/citologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas com Domínio T/metabolismo , Ativinas/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/citologia , Endoderma/embriologia , Endoderma/metabolismo , Elementos Facilitadores Genéticos , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Serina/metabolismo , Proteína Smad2/metabolismo , Proteínas com Domínio T/genética
10.
Nat Rev Genet ; 12(4): 253-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21415849

RESUMO

Induction of pluripotency by transcription factors has become a commonplace method to produce pluripotent stem cells. Great strides have been made in our understanding of the mechanism by which this occurs--particularly in terms of transcriptional and chromatin-based events--yet only a small part of the complete picture has been revealed. Understanding the mechanism of reprogramming to pluripotency will have important implications for improving the efficiency and quality of reprogramming and advancing therapeutic application of induced pluripotent stem cells. It will also help to reveal the machinery that stabilizes cell identity and to instruct the design of directed differentiation or lineage switching strategies. To inform the next phase in understanding reprogramming, we review the latest findings, highlight ongoing debates and outline future challenges.


Assuntos
Reprogramação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular , Cromatina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
11.
Exp Dermatol ; 25(5): 409-12, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26901496

RESUMO

Hmga2 functions as a chromatin-associated factor during development, but is not expressed in most adult tissues. Expression of Hmga2 in adult tissues has been associated with a variety of human cancers. Numerous studies have implicated Hmga2 in epithelial-to-mesenchymal transition (EMT) and cancer progression through gain of function studies, but it is unclear whether Hgma2 is necessary for EMT, tumor formation or tumor progression. We deleted Hmga2 in two mouse models of squamous cell carcinoma and found this gene to be dispensable. In fact, EMT, tumor initiation and progression all appeared to be mostly unaffected by the absence of Hmga2. Tumors lacking the ability to induce Hmga2 proceeded to initiate cutaneous spindle cell and squamous cell carcinomas with all the typical pathological and molecular hallmarks of these cancers.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteína HMGA2/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Camundongos , Neoplasias Experimentais
12.
Environ Manage ; 57(5): 1041-53, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26884141

RESUMO

Public agencies face significant political obstacles when they try to change long-standing policies. This paper examines efforts by the U.S. National Park Service to change long-term policies in Yellowstone and Yosemite national parks. We argue that, to be successful, the agency and pro-change allies must expand the sphere of conflict to engage the support of the broader American public through positive framing, supportive science, compelling economic arguments, consistent goals, and the commitment of other institutional actors. We show that the agency is capable of creating these conditions, as in the reintroduction of wolves to Yellowstone, but we argue that this is not always the outcome, as in reducing automobile congestion in Yosemite Valley.


Assuntos
Conservação dos Recursos Naturais , Parques Recreativos , Animais , Biodiversidade , Ecossistema , Espécies em Perigo de Extinção , Humanos , Formulação de Políticas , Comportamento Predatório , Política Pública , Estados Unidos , Lobos/fisiologia
13.
PLoS Genet ; 8(8): e1002879, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956909

RESUMO

Linker histones are essential components of chromatin, but the distributions and functions of many during cellular differentiation are not well understood. Here, we show that H1.5 binds to genic and intergenic regions, forming blocks of enrichment, in differentiated human cells from all three embryonic germ layers but not in embryonic stem cells. In differentiated cells, H1.5, but not H1.3, binds preferentially to genes that encode membrane and membrane-related proteins. Strikingly, 37% of H1.5 target genes belong to gene family clusters, groups of homologous genes that are located in proximity to each other on chromosomes. H1.5 binding is associated with gene repression and is required for SIRT1 binding, H3K9me2 enrichment, and chromatin compaction. Depletion of H1.5 results in loss of SIRT1 and H3K9me2, increased chromatin accessibility, deregulation of gene expression, and decreased cell growth. Our data reveal for the first time a specific and novel function for linker histone subtype H1.5 in maintenance of condensed chromatin at defined gene families in differentiated human cells.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Células Germinativas , Histonas/genética , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/citologia , Fibroblastos , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Membrana/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo
14.
Adv Funct Mater ; 24(44): 7053-7062, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26213530

RESUMO

Stroke is the leading cause of adult disability with ~80% being ischemic. Stem cell transplantation has been shown to improve functional recovery. However, the overall survival and differentiation of these cells is still low. The infarct cavity is an ideal location for transplantation as it is directly adjacent to the highly plastic peri-infarct region. Direct transplantation of cells near the infarct cavity has resulted in low cell viability. Here we deliver neural progenitor cells derived from induce pluripotent stem cells (iPS-NPC) to the infarct cavity of stroked mice encapsulated in a hyaluronic acid hydrogel matrix to protect the cells. To improve the overall viability of transplanted cells, each step of the transplantation process was optimized. Hydrogel mechanics and cell injection parameters were investigated to determine their effects on the inflammatory response of the brain and cell viability, respectively. Using parameters that balanced the desire to keep surgery invasiveness minimal and cell viability high, iPS-NPCs were transplanted to the stroke cavity of mice encapsulated in buffer or the hydrogel. While the hydrogel did not promote stem cell survival one week post-transplantation, it did promote differentiation of the neural progenitor cells to neuroblasts.

15.
J Virol ; 87(4): 2094-108, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192877

RESUMO

Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope's natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of "stemness" (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼10(6) IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2(+) cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2(+) populations in vivo or in vitro.


Assuntos
Efrina-B2/metabolismo , Vetores Genéticos , Lentivirus/genética , Vírus Nipah/fisiologia , Receptores Virais/metabolismo , Células-Tronco/virologia , Internalização do Vírus , Animais , Células Cultivadas , Humanos , Camundongos , Biologia Molecular/métodos , Vírus Nipah/genética , Transdução Genética
16.
Proc Natl Acad Sci U S A ; 108(18): 7425-30, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502519

RESUMO

The precise identity of cancer cells of origin and the molecular events of tumor initiation in epidermal squamous cell carcinoma (SCC) are unknown. Here we show that malignancy potential is related to the developmental capacity of the initiating cancer cell in a genetically defined, intact, and inducible in vivo model. Specifically, these data demonstrate that SCCs can originate from inside the hair follicle stem cell (SC) niche or from immediate progenitors, whereas more developmentally restricted progeny, the transit amplifying (TA) cells, are unable to generate even benign tumors in the same genetic context. Using a temporal model of tumorigenesis in situ, we highlight the phenotypes of cancer progression from the hair follicle SC niche, including hyperplasia, epithelial to mesenchymal transition, and SCC formation. Furthermore, we provide insights into the inability of hair follicle TA cells to respond to tumorigenic stimuli.


Assuntos
Carcinoma de Células Escamosas/fisiopatologia , Folículo Piloso/citologia , Células-Tronco Neoplásicas/citologia , Fenótipo , Neoplasias Cutâneas/fisiopatologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/metabolismo , Animais , Transição Epitelial-Mesenquimal/fisiologia , Folículo Piloso/patologia , Hiperplasia , Imuno-Histoquímica , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
J Pain ; 25(3): 672-681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37777033

RESUMO

Chronic back or neck pain (CBNP) can be primary (nociplastic or neuroplastic; without clear peripheral etiology) or secondary (to nociceptive or neuropathic causes). Expanding on available models of nociplastic pain, we developed a clinic-ready approach to diagnose primary/nociplastic pain: first, a standard physical exam and review of imaging to rule out secondary pain; and second, a detailed history of symptom presentation to rule in primary pain. We trained a physician who evaluated 222 patients (73.9% female, age M = 59.6) with CBNP; patients separately completed pain and psychosocial questionnaires. We estimated the prevalence of primary CBNP and explored biomedical, imaging, and psychological correlates of primary CBNP. Although almost all patients (97.7%) had at least 1 spinal anomaly on imaging, the diagnostic approach estimated that 88.3% of patients had primary pain, 5.0% had secondary pain, and 6.8% had mixed pain. Patients with primary pain were more likely than the other 2 groups of patients (combined as "non-primary pain") to report certain functional conditions, central sensitization, and features such as sensitivity to light touch, spreading pain, and pain worsening with stress; however, no difference was detected in depression, anxiety, and pain catastrophizing between those with primary and nonprimary pain. These findings are consistent with prior estimates that 85 to 90% of CBNP is "nonspecific." Further research is needed to validate and perhaps refine this diagnostic approach, which holds the potential for better outcomes if patients are offered treatments targeted to primary pain, such as pain neuroscience education and several emerging psychological therapies. PERSPECTIVE: We developed an approach to diagnose chronic primary pain, which was applied in a physiatry clinic to 222 patients with CBNP. Most patients (88.3%) had primary pain, despite almost universal anomalies on spinal imaging. This diagnostic approach can guide educational and psychological treatments tailored for primary pain.


Assuntos
Dor Crônica , Cervicalgia , Humanos , Feminino , Masculino , Cervicalgia/diagnóstico , Cervicalgia/epidemiologia , Cervicalgia/psicologia , Prevalência , Dor nas Costas , Dor Crônica/diagnóstico , Dor Crônica/epidemiologia , Dor Crônica/psicologia , Sensibilização do Sistema Nervoso Central
18.
Hum Mol Genet ; 19(8): 1603-17, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20106865

RESUMO

The modification of proteins with farnesyl or geranylgeranyl lipids, a process called protein prenylation, facilitates interactions of proteins with membrane surfaces. Protein prenylation is carried out by a pair of cytosolic enzymes, protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase-I). FTase and GGTase-I have attracted interest as therapeutic targets for both cancer and progeria, but very little information exists on the importance of these enzymes for homeostasis of normal tissues. One study actually suggested that FTase is entirely dispensable. To explore the importance of the protein prenyltransferases for normal tissues, we used conditional knockout alleles for Fntb and Pggt1b (which encode the beta-subunits of FTase and GGTase-I, respectively) and a keratin 14-Cre transgene to create mice lacking FTase or GGTase-I in skin keratinocytes. Keratinocyte-specific Fntb knockout mice were viable but developed severe alopecia. Although hair follicles appeared normal during development, they were morphologically abnormal after birth, and ultrastructural and immunohistochemical studies revealed many apoptotic cells. The interfollicular epidermis of Fntb-deficient mice appeared normal; however, keratinocytes from these mice could not proliferate in culture. As expected, non-farnesylated prelamin A and non-farnesylated DNAJA1 accumulated in Fntb-deficient keratinocytes. Keratinocyte-specific Pggt1b knockout mice survived development but died shortly after birth. Like Fntb-deficient keratinocytes, Pggt1b-deficient keratinocytes did not proliferate in culture. Thus, both FTase and GGTase-I are required for the homeostasis of skin keratinocytes.


Assuntos
Alquil e Aril Transferases/metabolismo , Farnesiltranstransferase/metabolismo , Queratinócitos/enzimologia , Pele/enzimologia , Alquil e Aril Transferases/genética , Animais , Células Cultivadas , Farnesiltranstransferase/genética , Feminino , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Prenilação de Proteína , Pele/crescimento & desenvolvimento , Pele/metabolismo
19.
J Cell Sci ; 123(Pt 5): 643-51, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20164303

RESUMO

Since the first studies of human embryonic stem cells (hESCs) and, more recently, human induced pluripotent stem cells (hiPSCs), the stem-cell field has been abuzz with the promise that these pluripotent populations will one day be a powerful therapeutic tool. Although it has been proposed that hiPSCs will supersede hESCs with respect to their research and/or clinical potential because of the ease of their derivation and the ability to create immunologically matched iPSCs for each individual patient, recent evidence suggests that iPSCs in fact have several underappreciated characteristics that might mean they are less suitable for clinical application. Continuing research is revealing the similarities, differences and deficiencies of various pluripotent stem-cell populations, and suggests that many years will pass before the clinical utility of hESCs and hiPSCs is realized. There are a plethora of ethical, logistical and technical roadblocks on the route to the clinical application of pluripotent stem cells, particularly of iPSCs. In this Essay, we discuss what we believe are important issues that should be considered when attempting to bring hiPSC-based technology to the clinic.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Órgãos Governamentais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Estados Unidos
20.
J Invest Dermatol ; 142(1): 53-64.e3, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280464

RESUMO

Manipulation of adrenergic signaling has been shown experimentally and clinically to affect hair follicle growth. In this study, we provide direct evidence that canonical cAMP/CRE-binding protein signaling through adrenergic receptors can regulate hair follicle stem cell (HFSC) activation and hair cycle. We found that CRE-binding protein activation is regulated through the hair cycle and coincides with HFSC activation. Both isoproterenol and procaterol, agonists of adrenergic receptors, show the capacity to activate the hair cycle in mice. Furthermore, deletion of ADRB2 receptor, which is thought to mediate sympathetic nervous system regulation of HFSCs, was sufficient to block HFSC activation. Downstream, stimulation of adenylyl cyclase with forskolin or inhibition of phosphodiesterase to increase cAMP accumulation or direct application of cAMP was each sufficient to promote HFSC activation and accelerate initiation of hair cycle. Genetic induction of a Designer Receptors Exclusively Activated by Designer Drug allele showed that G-protein coupled receptor/GαS stimulation, specifically in HFSCs, promoted the activation of the hair cycle. Finally, we provide evidence that G-protein coupled receptor/CRE-binding protein signaling can potentially act on HFSCs by promoting glycolytic metabolism, which was previously shown to stimulate HFSC activation. Together, these data provide mechanistic insights into the role of sympathetic innervation on HFSC function.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , AMP Cíclico/metabolismo , Folículo Piloso/fisiologia , Cabelo/fisiologia , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Glicólise , Cabelo/patologia , Isoproterenol/metabolismo , Queratina-15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Procaterol/metabolismo , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais , Sistema Nervoso Simpático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA