RESUMO
Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.
Assuntos
Antibacterianos , Lipopolissacarídeos , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade MicrobianaRESUMO
A structure-activity relationship (SAR) study of NOSO-95179, a nonapeptide from the Odilorhabdin class of antibacterials, was performed by systematic variations of amino acids in positions 2 and 5 of the peptide. A series of non-proteinogenic amino acids was synthesized in high enantiomeric purity from Williams' chiral diphenyloxazinone by highly diastereoselective alkylation or by aldol-type reaction. NOSO-95179 analogues for SAR studies were prepared using solid-phase peptide synthesis. Inhibition of bacterial translation by each of the synthesized Odilorhabdin analogues was measured using an in vitro test. For the most efficient analogues, antibacterial efficacy was measured against two wild-type Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) and against an efflux defective E. coli strain (ΔtolC) to evaluate the impact of efflux on the antibacterial activity.
Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Relação Estrutura-AtividadeRESUMO
Novel series of compounds consisting of 2-amidocyclohex-1-ene carboxylate and phenyl parts which are connected by enyne (compounds 2a-f), but-1-yne (compounds 4a-j), and phenylethylene (compounds 5a-f) linkers as HCA2 full agonists were designed and their functional activity using cAMP assay and binding affinity using radioligand (3H-niacin) binding assay were evaluated. In general, compounds of all three series exhibit similar HCA2 binding and activation profile. However, the activity is strongly dependent on the substituent at the aromatic part of the structure. Among the structures evaluated, the highest affinity and potency in all series were exhibited by compounds containing 4-hydroxy and/or 2-chloro or 2-fluoro substituents. The most active compounds in the enyne and but-1-yne series in the cAMP assay are 2-fluoro,4-hydroxy and 2-chloro,4-hydroxy phenyl derivatives 2f, 4f, and 4g showing potency similar to the previously described 4-hydroxy-biphenyl analogue 5c.
Assuntos
Cicloexenos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Cicloexenos/síntese química , Cicloexenos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Receptores Nicotínicos , Relação Estrutura-AtividadeRESUMO
l-Carnitine is a cofactor in the energy metabolism pathways where it drives the uptake and oxidation of long chain fatty acids (LCFA) by mitochondria. LCFA lipotoxicity causes mitochondrial damage and results in an insufficient energy supply and a decrease in l-carnitine content limits LCFA flux and protects mitochondria. Here, we tested whether the inhibition of GBB dioxygenase (BBOX) or organic cation transporter 2 (OCTN2) is the most effective strategy to decrease l-carnitine content. The activity of 51 compounds was tested and we identified selective inhibitors of OCTN2. In contrast to selective inhibitors of BBOX, OCTN2 inhibitors induced a 10-fold decrease in l-carnitine content in the heart tissues and a significant 35% reduction of myocardial infarct size. In addition, OCTN2 inhibition correlated with the inhibitor content in the heart tissues, and OCTN2 could potentially be an efficient target to increase drug transport into tissues and to reduce drug elimination by urine. In conclusion, the results of this study confirm that selective inhibition of OCTN2, compared to selective inhibition of BBOX, is a far more effective approach to decrease l-carnitine content and to induce cardioprotective effects. OCTN2 could potentially be an efficient tool to increase drug transport in tissues and to reduce drug elimination via urine.
Assuntos
Cardiotônicos/uso terapêutico , Carnitina/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , gama-Butirobetaína Dioxigenase/antagonistas & inibidores , Animais , Cardiotônicos/farmacologia , Carnitina/sangue , Carnitina/urina , Masculino , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Ratos Wistar , Membro 5 da Família 22 de Carreadores de SolutoRESUMO
2-(3-(Naphthalen-2-yl)propanamido)cyclohex-1-enecarboxylic acid and its 6-hydroxynaphthalen-2-yl analogue are well-known hydroxyl-carboxylic acid (HCA) receptor HCA2 agonists. A series of novel aryl derivatives of 2-amidocyclohex-1-ene carboxylic acid that contained rigidity elements, such as an E-double bond, triple bond, and trans or cis-substituted cyclopropane rings, instead of the saturated ethane linker in the amide part of the molecules were designed and synthesized, and the derivatives' potency for the activation of HCA1, HCA2, and HCA3 receptors by 3'-5'-cyclic adenosine monophosphate (cAMP) assay were evaluated. The SAR studies revealed that the rigidifying of appropriate molecules enabled modulation of the potency and selectivity of the HCA2 receptor activation.
Assuntos
Acrilamidas/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Acrilamidas/síntese química , Acrilamidas/química , Linhagem Celular , Ácidos Cicloexanocarboxílicos/síntese química , Ácidos Cicloexanocarboxílicos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores Nicotínicos , Relação Estrutura-AtividadeRESUMO
New antibacterial compounds are urgently needed, especially for infections caused by the top-priority Gram-negative bacteria that are increasingly difficult to treat. Lipid A is a key component of the Gram-negative outer membrane and the LpxH enzyme plays an important role in its biosynthesis, making it a promising antibacterial target. Inspired by previously reported ortho-N-methyl-sulfonamidobenzamide-based LpxH inhibitors, novel benzamide substitutions were explored in this work to assess their in vitro activity. Our findings reveal that maintaining wild-type antibacterial activity necessitates removal of the N-methyl group when shifting the ortho-N-methyl-sulfonamide to the meta-position. This discovery led to the synthesis of meta-sulfonamidobenzamide analogs with potent antibacterial activity and enzyme inhibition. Moreover, we demonstrate that modifying the benzamide scaffold can alter blocking of the cardiac voltage-gated potassium ion channel hERG. Furthermore, two LpxH-bound X-ray structures show how the enzyme-ligand interactions of the meta-sulfonamidobenzamide analogs differ from those of the previously reported ortho analogs. Overall, our study has identified meta-sulfonamidobenzamide derivatives as promising LpxH inhibitors with the potential for optimization in future antibacterial hit-to-lead programs.
Assuntos
Antibacterianos , Benzamidas , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Benzamidas/farmacologia , Benzamidas/química , Benzamidas/síntese química , Relação Estrutura-Atividade , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Relação Dose-Resposta a Droga , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Modelos MolecularesRESUMO
A number of hydroxamic acid derivatives which inhibit human histone deacetylases were investigated for efficacy against cultured bloodstream form Trypanosoma brucei. Three out of the four classes tested displayed significant activity. The majority of compounds blocked parasite growth in the submicromolar range. The most potent was a member of the sulphonepiperazine series with an IC(50) of 34nM. These results identify lead compounds with potential for the development of a novel class of trypanocidal agent.
Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Células HeLa , Histona Desacetilases/metabolismo , Humanos , Modelos Moleculares , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/tratamento farmacológicoRESUMO
ε-Trimethyllysine dioxygenase (TMLD) is a non-heme Fe(II) and α-ketoglutarate dependent oxygenase that catalyzes the stereospecific hydroxylation of ε-trimethyl-l-lysine (TML) to ß-hydroxy-TML during the first step of l-carnitine biosynthesis. Targeting TMLD with inhibitors is a viable strategy for the treatment of cardiovascular diseases. Herein, we report a methodology for isothermal titration calorimetry analysis of TMLD substrate analogue binding to the enzyme. Despite the high structural similarity of the tested compounds, two different binding mechanisms (enthalpy- and entropy-driven) were observed, giving insight into the ligand (substrate) selectivity of TMLD. We demonstrate that the method allows distinguishing a natural substrate-like binding mode, which correlates with the ability of the compounds to serve as substrates in the TMLD catalytic reaction.
RESUMO
Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease. Because of its heterogeneity and lack of hormone receptors or HER2 expression, targeted therapy is limited. Here, by performing a functional siRNA screening for 2-OG-dependent enzymes, we identified gamma-butyrobetaine hydroxylase 1 (BBOX1) as an essential gene for TNBC tumorigenesis. BBOX1 depletion inhibits TNBC cell growth while not affecting normal breast cells. Mechanistically, BBOX1 binds with the calcium channel inositol-1,4,5-trisphosphate receptor type 3 (IP3R3) in an enzymatic-dependent manner and prevents its ubiquitination and proteasomal degradation. BBOX1 depletion suppresses IP3R3-mediated endoplasmic reticulum calcium release, therefore impairing calcium-dependent energy-generating processes including mitochondrial respiration and mTORC1-mediated glycolysis, which leads to apoptosis and impaired cell-cycle progression in TNBC cells. Therapeutically, genetic depletion or pharmacologic inhibition of BBOX1 inhibits TNBC tumor growth in vitro and in vivo. Our study highlights the importance of targeting the previously uncharacterized BBOX1-IP3R3-calcium oncogenic signaling axis in TNBC. SIGNIFICANCE: We provide evidence from unbiased screens that BBOX1 is a potential therapeutic target in TNBC and that genetic knockdown or pharmacologic inhibition of BBOX1 leads to decreased TNBC cell fitness. This study lays the foundation for developing effective BBOX1 inhibitors for treatment of this lethal disease.This article is highlighted in the In This Issue feature, p. 1611.
Assuntos
gama-Butirobetaína Dioxigenase/metabolismo , Proliferação de Células , Feminino , Humanos , Transdução de SinaisRESUMO
N-Leucinyl benzenesulfonamides have been discovered as a novel class of potent inhibitors of E. coli leucyl-tRNA synthetase. The binding of inhibitors to the enzyme was measured by using isothermal titration calorimetry. This provided information on enthalpy and entropy contributions to binding, which, together with docking studies, were used for structure-activity relationship analysis. Enzymatic assays revealed that N-leucinyl benzenesulfonamides display remarkable selectivity for E. coli leucyl-tRNA synthetase compared to S. aureus and human orthologues. The simplest analogue of the series, N-leucinyl benzenesulfonamide (R = H), showed the highest affinity against E. coli leucyl-tRNA synthetase and also exhibited antibacterial activity against Gram-negative pathogens (the best MIC = 8 µg/mL, E. coli ATCC 25922), which renders it as a promising template for antibacterial drug discovery.
RESUMO
Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017.
Assuntos
Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Palmitoilcarnitina/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Carnitina/análogos & derivados , Carnitina/metabolismo , Gorduras na Dieta , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/patologiaRESUMO
AIMS: Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. MAIN METHODS: Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-carnitine, GBB, choline and TMAO using UPLC-MS/MS. Meldonium effects on TMA production by intestinal bacteria from L-carnitine and choline were tested. KEY FINDINGS: Treatment with meldonium significantly decreased intestinal microbiota-dependent production of TMA/TMAO from L-carnitine, but not from choline. 24hours after the administration of meldonium, the urinary excretion of TMAO was 3.6 times lower in the combination group than in the L-carnitine-alone group. In addition, the administration of meldonium together with L-carnitine significantly increased GBB concentration in blood plasma and in isolated rat small intestine perfusate. Meldonium did not influence bacterial growth and bacterial uptake of L-carnitine, but TMA production by the intestinal microbiota bacteria K. pneumoniae was significantly decreased. SIGNIFICANCE: We have shown for the first time that TMA/TMAO production from quaternary amines could be decreased by targeting bacterial TMA-production. In addition, the production of pro-atherogenic TMAO can be suppressed by shifting the microbial degradation pattern of supplemental/dietary quaternary amines.
Assuntos
Vias Biossintéticas/efeitos dos fármacos , Carnitina/metabolismo , Trato Gastrointestinal/microbiologia , Metilaminas/metabolismo , Metilidrazinas/farmacologia , Microbiota/fisiologia , Animais , Betaína/administração & dosagem , Betaína/análogos & derivados , Betaína/sangue , Vias Biossintéticas/fisiologia , Isótopos de Carbono/metabolismo , Carnitina/administração & dosagem , Carnitina/sangue , Carnitina/urina , Colina/metabolismo , Cromatografia Líquida de Alta Pressão , Metilaminas/urina , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Espectrometria de Massas em TandemRESUMO
γ-Butyrobetaine hydroxylase (BBOX) catalyzes the conversion of gamma butyrobetaine (GBB) to l-carnitine, which is involved in the generation of metabolic energy from long-chain fatty acids. BBOX inhibitor 3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propanoate (mildronate), which is an approved, clinically used cardioprotective drug, is a relatively poor BBOX inhibitor and requires high daily doses. In this paper we describe the design, synthesis, and properties of 51 compounds, which include both GBB and mildronate analogues. We have discovered novel BBOX inhibitors with improved IC50 values; the best examples are in the nanomolar range and about 2 orders of magnitude better when compared to mildronate. For six inhibitors, crystal structures in complex with BBOX have been solved to explain their activities and pave the way for further inhibitor design.
Assuntos
Carnitina/antagonistas & inibidores , Carnitina/biossíntese , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , gama-Butirobetaína Dioxigenase/antagonistas & inibidores , Calorimetria , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Indicadores e Reagentes , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Metilidrazinas/química , Metilidrazinas/farmacologia , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Proteínas Recombinantes/química , Relação Estrutura-Atividade , gama-Butirobetaína Dioxigenase/genéticaRESUMO
The histone deacetylase inhibitor belinostat is being evaluated clinically as a single agent in the treatment of peripheral T-cell lymphomas and in combination with other anticancer agents to treat a wide range of human cancers including acute leukemias and solid tumors. To determine the pharmacokinetics of belinostat in the NCI ODWG liver dysfunction study, we developed and validated an LC-MS/MS assay for the quantitation of belinostat and five major metabolites in 0.05 mL human plasma. After protein precipitation, chromatographic separation was achieved with a Waters Acquity BEH C18 column and a linear gradient of 0.1% formic acid in acetonitrile and water. Detection with an ABI 4000Q mass spectrometer utilized both electrospray positive and negative mode ionization. The assay was linear from 30 to 5000 ng/mL for all six analytes and proved to be accurate (92.0-104.4%) and precise (CV <13.7%), and fulfilled FDA criteria for bioanalytical method validation. We demonstrated the suitability of this assay for measuring parent drug and five major metabolites in plasma from a patient who was administered belinostat IV at a dose of 400 mg/m(2). The LC-MS/MS assay that has been developed will be an essential tool to further define the metabolism and pharmacology of belinostat in the ongoing liver organ dysfunction as well as other studies that investigate belinostat with other anticancer agents.
Assuntos
Cromatografia Líquida/métodos , Inibidores de Histona Desacetilases/farmacocinética , Ácidos Hidroxâmicos/farmacocinética , Sulfonamidas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Inibidores de Histona Desacetilases/análise , Humanos , Ácidos Hidroxâmicos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfonamidas/análiseRESUMO
Existing pharmacological inhibitors for nicotinamide phosphoribosyltransferase (NAMPT) are promising therapeutics for treating cancer. By using medicinal and computational chemistry methods, the structure-activity relationship for novel classes of NAMPT inhibitors is described, and the compounds are optimized. Compounds are designed inspired by the NAMPT inhibitor APO866 and cyanoguanidine inhibitor scaffolds. In comparison with recently published derivatives, the new analogues exhibit an equally potent antiproliferative activity in vitro and comparable activity in vivo. The best performing compounds from these series showed subnanomolar antiproliferative activity toward a series of cancer cell lines (compound 15: IC50 0.025 and 0.33 nM, in A2780 (ovarian carcinoma) and MCF-7 (breast), respectively) and potent antitumor in vivo activity in well-tolerated doses in a xenograft model. In an A2780 xenograft mouse model with large tumors (500 mm(3)), compound 15 reduced the tumor volume to one-fifth of the starting volume at a dose of 3 mg/kg administered ip, bid, days 1-9. Thus, compounds found in this study compared favorably with compounds already in the clinic and warrant further investigation as promising lead molecules for the inhibition of NAMPT.
Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Guanidinas/química , Humanos , Ligação de Hidrogênio , Ácidos Hidroxâmicos/química , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Optimization of the anticancer activity for a class of compounds built on a 1,3-dihydroindole-2-one scaffold was performed. In comparison with recently published derivatives of oxyphenisatin the new analogues exhibited an equally potent antiproliferative activity in vitro and improved tolerability and activity in vivo. The best compounds from this series showed low nanomolar antiproliferative activity toward a series of cancer cell lines (compound (S)-38: IC(50) of 0.48 and 2 nM in MCF-7 (breast) and PC3 (prostate), respectively) and potent antitumor effects in well tolerated doses in xenograft models. The racemic compound (RS)-38 showed complete tumor regression at a dose of 20 mg/kg administered iv on days 1 and 7 in a PC3 rat xenograft.
Assuntos
Antineoplásicos/síntese química , Indóis/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Transplante HeterólogoRESUMO
Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety was the key to obtain good potency. This approach yielded compounds such as (E)-N-[6-(hydroxyamino)-6-oxohexyl]-3-(7-quinolinyl)-2-propenamide (27) (HDAC IC(50) 8 nM) which showed potent in vivo activity in the P388 mouse leukemia syngeneic model (an increased lifespan (ILS) of 111% was obtained).