Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 155: 107014, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217577

RESUMO

A coiled shell is the most evident feature of the typical Bauplan of a gastropod mollusc. However, at least 54 families independently evolved an apparently simplified shell morphology: the limpet. Species with this largely uncoiled, depressed shell morphology occur in almost every aquatic habitat and are associated to a number of different lifestyles and diets. The marine gastropod family Capulidae includes 18 recognised genera, the large majority of which are coiled, but with a number of limpet-like species. Capulid shell plasticity is also associated to a broad range of feeding ecologies, from obligate suspension feeders to kleptoparasites. To investigate the evolution of the limpet-like shell in the family Capulidae we performed an ancestral state reconstruction analysis on a time-calibrated phylogenetic tree (COI, 16S, and ITS2) including 16 species representing a good deal of its morphological diversity. Our results identified at least three capulid lineages that independently evolved limpet-like shells, suggesting that a recurrent limpetization process characterizes this family. One of the limpet-like genera was undescribed and was here named Cryocapulus n. gen. We suggest that capulids evolved from a coiled suspension feeder lineage and that the shift to kleptoparasitism, which occurred in the family ancestor, may have represented a strategy to save energy through the exploitation of the water current produced by the host. Probably the major drivers of shell evolution in capulids are related to their ecology, most of them being kleptoparasites, include the shape and the kind of host substrate, and lead to the repeated acquisition of a limpet-like shape.


Assuntos
Gastrópodes/fisiologia , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Calibragem , Filogenia , Processos Estocásticos , Fatores de Tempo
2.
Mol Biol Evol ; 35(10): 2355-2374, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032303

RESUMO

Transcriptome-based exon capture methods provide an approach to recover several hundred markers from genomic DNA, allowing for robust phylogenetic estimation at deep timescales. We applied this method to a highly diverse group of venomous marine snails, Conoidea, for which published phylogenetic trees remain mostly unresolved for the deeper nodes. We targeted 850 protein coding genes (678,322 bp) in ca. 120 samples, spanning all (except one) known families of Conoidea and a broad selection of non-Conoidea neogastropods. The capture was successful for most samples, although capture efficiency decreased when DNA libraries were of insufficient quality and/or quantity (dried samples or low starting DNA concentration) and when targeting the most divergent lineages. An average of 75.4% of proteins was recovered, and the resulting tree, reconstructed using both supermatrix (IQ-tree) and supertree (Astral-II, combined with the Weighted Statistical Binning method) approaches, are almost fully supported. A reconstructed fossil-calibrated tree dates the origin of Conoidea to the Lower Cretaceous. We provide descriptions for two new families. The phylogeny revealed in this study provides a robust framework to reinterpret changes in Conoidea anatomy through time. Finally, we used the phylogeny to test the impact of the venom gland and radular type on diversification rates. Our analyses revealed that repeated losses of the venom gland had no effect on diversification rates, while families with a breadth of radula types showed increases in diversification rates, thus suggesting that trophic ecology may have an impact on the evolution of Conoidea.


Assuntos
Caramujo Conus/genética , Análise de Sequência de DNA/métodos , Animais , Evolução Biológica , Evolução Molecular , Éxons , Gastrópodes/genética , Variação Genética/genética , Filogenia , Transcriptoma/genética
3.
Mol Phylogenet Evol ; 99: 337-353, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27012605

RESUMO

Nassariidae are a group of scavenging, predominantly marine, snails that are diversified on soft bottoms as well as on rocky shores, and are the subject of numerous research papers in ecology, ecotoxicology or paleontology. A weak and/or apparently continuous variation in shell characters has resulted in an intimidating taxonomy, with complex synonymy lists. Over 1320 extant nominal species have been described, of which 442 are currently regarded as valid. Above species level, the state of the art is equally hazy, with four subfamilies and twelve genera currently accepted, and many other names in the graveyard of synonymy. A molecular analysis based on three mitochondrial (COI, 16S, 12S) and two nuclear (28S, H3) markers was conducted. Our dataset includes 218 putative nassariid species, comprising 9 of the 12 valid genera, and 25 nominal genera represented by their type species. The monophyly of the Nassariidae as classically construed is not confirmed. Species of Antillophos, Engoniophos, Phos, Nassaria, Tomlinia and Anentome (formerly considered Buccinidae) are included inside the Nassariidae clade. Within the Nassariinae, the tree unexpectedly demonstrates that species from the Atlantic and the Indo-Pacific form different clades which represent several independent diversification events. Through an integrative approach, the reconstruction of ancestral states was addressed for eight characters supposedly informative for taxonomy. Using numerous fossil calibration points, Nassariidae appear to have originated 120 MYA ago in Atlantic temperate waters during the Lower Cretaceous. Our results have a profound impact on nassariid taxonomy, especially with regard to the validity of subfamily- and genus-level names.


Assuntos
Gastrópodes/classificação , Animais , DNA Mitocondrial/química , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Gastrópodes/genética , Histonas/genética , Filogenia , RNA Ribossômico 28S/química , RNA Ribossômico 28S/isolamento & purificação , RNA Ribossômico 28S/metabolismo , Análise de Sequência de DNA
4.
Zootaxa ; 3754: 239-76, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24869692

RESUMO

Most neogastropod families have a continuous record from the Cretaceous or Paleogene to the Recent. However, the fossil record also contains a number of obscure nominal families with unusual shell characters that are not adequately placed in the current classification. Some of these are traditionally regarded as valid, and some have been "lost" in synonymy. One such "lost" family is the Pyramimitridae, established by Cossmann in 1901 for the Eocene genus Pyramimitra, and currently included in the synonymy of Buccinidae. Examination of several species of inconspicuous, small turriform gastropods has revealed a radula type so far unknown in Neogastropoda, and their shell characters identify them as members of the "extinct" family Pyramimitridae. Neither the radular morphology nor the anatomy reveal the relationships of this enigmatic, "living fossil" family. Molecular data (12S, 16S, 28S, COI) confirm the recognition of Pyramimitridae as a distinct family, but no sister group was identified in the analysis. The family Pyramimitridae Cossmann, 1901, is thus restored as a valid family of Neogastropoda that includes the genera Pyramimitra Conrad, 1865, Endiatoma Cossmann, 1896, Vaughanites Woodring, 1928, Hortia Lozouet, 1999, and Teremitra new genus. Pyramimitrids occur in the Recent fauna at bathyal depths of the Indo-Pacific from Taiwan to Madagascar and New Zealand, with three genera and nine species (all but one new).


Assuntos
Gastrópodes/classificação , Exoesqueleto , Animais , Sequência de Bases , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fósseis , Gastrópodes/anatomia & histologia , Gastrópodes/genética , Oceano Índico , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Análise de Sequência de DNA
5.
Proc Natl Acad Sci U S A ; 106(38): 16051-6, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19717433

RESUMO

Recent investigations into the origins of symbolism indicate that personal ornaments in the form of perforated marine shell beads were used in the Near East, North Africa, and SubSaharan Africa at least 35 ka earlier than any personal ornaments in Europe. Together with instances of pigment use, engravings, and formal bone tools, personal ornaments are used to support an early emergence of behavioral modernity in Africa, associated with the origin of our species and significantly predating the timing for its dispersal out of Africa. Criticisms have been leveled at the low numbers of recovered shells, the lack of secure dating evidence, and the fact that documented examples were not deliberately shaped. In this paper, we report on 25 additional shell beads from four Moroccan Middle Paleolithic sites. We review their stratigraphic and chronological contexts and address the issue of these shells having been deliberately modified and used. We detail the results of comparative analyses of modern, fossil, and archaeological assemblages and microscopic examinations of the Moroccan material. We conclude that Nassarius shells were consistently used for personal ornamentation in this region at the end of the last interglacial. Absence of ornaments at Middle Paleolithic sites postdating Marine Isotope Stage 5 raises the question of the possible role of climatic changes in the disappearance of this hallmark of symbolic behavior before its reinvention 40 ka ago. Our results suggest that further inquiry is necessary into the mechanisms of cultural transmission within early Homo sapiens populations.


Assuntos
Evolução Biológica , Hominidae/fisiologia , África , Animais , Antropologia Física/métodos , Comportamento , Fósseis , Gastrópodes/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/classificação , Humanos , Região do Mediterrâneo , Dinâmica Populacional
6.
Sci Rep ; 9(1): 6977, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061398

RESUMO

Based on the specimens collected during three deep-sea cruises, and deposited at the Muséum National d'Histoire Naturelle (MNHN) in Paris, we analysed the diversity of benthic communities within the EEZ of French Polynesia. The literature and the MNHN database allowed us to inventory 471 species of invertebrates, among which 169 were newly described. We mainly found data for Mollusca, Crustacea, Brachiopoda and Crinoidea. We also found samples from other taxa, which still remain unidentified within the collections of the MNHN. Although this inventory is incomplete, we demonstrate that the deep waters of French Polynesia host unique benthic communities and endemic species. Using diversity and multivariate analyses, we show that the deep-sea benthic communities are structured by depth, habitats, geography and also by the presence of polymetallic crust. Furthermore, by focusing on the molluscs of the central area of French Polynesia, we show that the spectrum of shell size differs among deep-sea habitats. Specifically, shells tend to be smaller on encrusted seamounts than on island slopes. Together with the size range of organisms, low abundance, rarity and endemism designate these habitats as sensitive. These results should thus be taken into account in the evaluation of the expected impact of mining activities on biological communities.


Assuntos
Crustáceos/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Sedimentos Geológicos/química , Metais/química , Moluscos/crescimento & desenvolvimento , Animais , Crustáceos/classificação , Moluscos/classificação , Oceanos e Mares
7.
Zootaxa ; 4103(2): 195-200, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27394632

RESUMO

Modulidae is a littoral cerithioid family exclusively encountered in tropical and subtropical regions. It contains 12 to 15 living species (some species are not clearly delimited). Only one species is known to occur in the vast Indo-Pacific region (Bouchet 2015) and two species in the eastern Atlantic. By comparison, the tropical American regions are relatively rich with at least eleven living species (two or three species in the eastern Pacific and nine or more in the western Atlantic), and an equivalent number or more of fossil species (Landau et al. 2014).


Assuntos
Gastrópodes/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Fósseis/anatomia & histologia , Gastrópodes/anatomia & histologia , Gastrópodes/crescimento & desenvolvimento , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA