Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13934-13948, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38741463

RESUMO

Double perovskite films have been extensively studied for ferroelectric order, ferromagnetic order, and photovoltaic effects. The customized ion combinations and ordered ionic arrangements provide unique opportunities for bandgap engineering. Here, a synergistic strategy to induce chemical strain and charge compensation through inequivalent element substitution is proposed. A-site substitution of the barium ion is used to modify the chemical valence and defect density of the two B-site elements in Bi2FeMnO6 double perovskite epitaxial thin films. We dramatically increased the ferroelectric photovoltaic effect to ∼135.67 µA/cm2 from 30.62 µA/cm2, which is the highest in ferroelectric thin films with a thickness of less than 100 nm under white-light LED irradiation. More importantly, the ferroelectric polarization can effectively improve the photovoltaic efficiency of more than 5 times. High-resolution HAADF-STEM, synchrotron-based X-ray diffraction and absorption spectroscopy, and DFT calculations collectively demonstrate that inequivalent ion plays a dual role of chemical strain (+1.92 and -1.04 GPa) and charge balance, thereby introducing lattice distortion effects. The reduction of the oxygen vacancy density and the competing Jahn-Teller distortion of the oxygen octahedron are the main phenomena of the change in electron-orbital hybridization, which also leads to enhanced ferroelectric polarization values and optical absorption. The inequivalent strategy can be extended to other double perovskite systems and applied to other functional materials, such as photocatalysis for efficient defect control.

2.
Inorg Chem ; 60(14): 10075-10078, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33724790

RESUMO

Presented here is a calcium-based metal-organic framework (Ca-MOF) with obvious room temperature phosphorescence. Notably, a long afterglow can be observed by the naked eye and lasts about 4 s, which is mainly attributed to the unique framework structure of the Ca-MOF.

3.
Inorg Chem ; 60(18): 13955-13959, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34498867

RESUMO

Presented here is the light hydrocarbon separation of titanium metal-organic frameworks (Ti-MOFs). Compared with the cyclic Ti-oxo cluster (Ti8O8(CO2)16, Ti8Ph), porous structures of FIR-125 and FIR-126 (FIR = Fujian Institute Research) can effectively improve the adsorption amounts of light hydrocarbons. The introduction of different functional groups and Ti-oxo clusters with small window sizes enables them to exhibit the highly selective separation of C2 and C3 hydrocarbons versus methane in an ambient atmosphere. The results show that Ti-MOFs are potential porous adsorbents for the separation of light hydrocarbons.

4.
Angew Chem Int Ed Engl ; 60(39): 21426-21433, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34314080

RESUMO

Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution.

5.
Inorg Chem ; 56(3): 1057-1060, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28117582

RESUMO

We report the synthesis and photoelectrochemical activity of three lanthanide-titanium oxo clusters (LTOCs), formulated as [Ln8Ti10(µ3-O)14(tbba)34(Ac)2(H2O)4(THF)2]·2Htbba [Ln = Eu (1), Sm (2), and Gd (3); Htbba = 4-tert-butylbenzoic acid; Ac- = acetate]. These stable compounds are efficient catalysts of photoelectrochemical water oxidation with high turnover numbers (7581.0 for 1, 5172.4 for 2, and 5413.0 for 3) and high turnover frequencies (2527.0 for 1, 1724.1 for 2, and 1804.0 for 3). The differences in the photoelectrochemical activity among these three compounds may be related to the differences in their band gaps. This work shows that the heterometallic LTOCs provide a tunable platform for the design of highly effective water oxidation catalysts.

6.
Inorg Chem ; 56(20): 12186-12192, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28956601

RESUMO

Three heterometallic lanthanide-titanium oxo clusters (LnTOCs) formulated as Eu2Ti4(µ3-O)4(tbba)12(acac)2 (Eu2Ti4, 1, Hacac = acetylacetone), Eu5Ti4(µ3-O)6(tbba)20(Htbba)(THF)2 (Eu5Ti4, 2), and Eu8Ti10(µ3-O)14(Ac)2(tbba)34(H2O)4(THF)2(Htbba)2 (Eu8Ti10, 3) were prepared through the reactions of 4-tert-butylbenzoate (Htbba), rare-earth salts, and Ti(OiPr)4. The solution luminescence investigation discovered a size-dependent quantum yield phenomenon in solution. A solid-state luminescence study showed that these three LnTOCs display temperature-dependent photoluminescent properties. Interestingly, the Eu5Ti4 cluster exhibited the highest quantum yield of 94.9% in the solid state among the reported 3d-4f clusters.

7.
Nanomaterials (Basel) ; 14(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39269118

RESUMO

Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material's inherent water solubility, the methods used for the preparation of epitaxial films have mainly been limited to high-vacuum techniques, which greatly limits these films' development. In this study, we prepared freestanding single-crystal perovskite oxide thin films on strontium aluminate using a simple, easy-to-develop, and low-cost chemical full-solution deposition technique. We demonstrate that a reasonable choice of solvent molecules can effectively reduce the damage to the strontium aluminate layer, allowing successful epitaxy of perovskite oxide thin films, such as 2-methoxyethanol and acetic acid. Molecular dynamics simulations further demonstrated that this is because of their stronger adsorption capacity on the strontium aluminate surface, which enables them to form an effective protective layer to inhibit the hydration reaction of strontium aluminate. Moreover, the freestanding film can still maintain stable ferroelectricity after release from the substrate, which provides an idea for the development of single-crystal perovskite oxide films and creates an opportunity for their development in the field of flexible electronic devices.

8.
ACS Omega ; 7(25): 22015-22019, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785328

RESUMO

Presented here is a water-stable Ca-MOF that has been facilely synthesized from the metastable 3D framework in water and exhibits room-temperature phosphorescence with second scale long afterglow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA