Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Derm Venereol ; 100(8): adv00122, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266413

RESUMO

Although it is known that psoriatic dermal-derived mesenchymal stem cells (DMSCs) dysregulate keratinocyte proliferation, the biological activity profile of keratinocytes influenced by psoriatic DMSCs remain unknown. In the present study, we assessed the impact of psoriatic DMSCs on keratinocyte proliferation, differentiation, and glucose metabolism in normal human epidermal keratinocytes co-cultured with or without psoriatic DMSCs. Co-culture of normal human epidermal keratinocytes with psoriatic DMSCs downregulated expression levels of proteins associated with cell junction assembly (alpha-actinin-1, catenin beta-1, poliovirus receptor-related protein 4 and procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2), while upregulating proteins associated with keratinocyte proliferation and differentiation (involucrin, isoform 2 of Histone-binding protein, isoform 3 of Telomeric repeat-binding factor 2 and keratin 13). Moreover, co-culture of normal human epidermal keratinocytes with psoriatic DMSCs stimulated keratinocyte proliferation and glycolysis, but reduced keratinocyte junctions. Taken together, these results demonstrate that psoriatic DMSCs increase keratinocyte proliferation and glycolysis, and reduce cell junctions, suggesting a pathogenic role of psoriatic DMSCs in epidermal hyperplasia, aberrant differentiation, and reduction in turnover time of keratinocytes in psoriasis.


Assuntos
Glicólise , Junções Intercelulares/metabolismo , Queratinócitos/fisiologia , Células-Tronco Mesenquimais , Psoríase/patologia , Actinina/metabolismo , Adulto , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Junções Intercelulares/patologia , Masculino , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , beta Catenina/metabolismo
2.
ACS Nano ; 18(20): 12905-12916, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38721835

RESUMO

For most frequent respiratory viruses, there is an urgent need for a universal influenza vaccine to provide cross-protection against intra- and heterosubtypes. We previously developed an Escherichia coli fusion protein expressed extracellular domain of matrix 2 (M2e) and nucleoprotein, named NM2e, and then combined it with an aluminum adjuvant, forming a universal vaccine. Although NM2e has demonstrated a protective effect against the influenza virus in mice to some extent, further improvement is still needed for the induction of immune responses ensuring adequate cross-protection against influenza. Herein, we fabricated a cationic solid lipid nanoadjuvant using poly(lactic acid) (PLA) and dimethyl-dioctadecyl-ammonium bromide (DDAB) and loaded NM2e to generate an NM2e@DDAB/PLA nanovaccine (Nv). In vitro experiments suggested that bone marrow-derived dendritic cells incubated with Nv exhibited ∼4-fold higher antigen (Ag) uptake than NM2e at 16 h along with efficient activation by NM2e@DDAB/PLA Nv. In vivo experiments revealed that Ag of the Nv group stayed in lymph nodes (LNs) for more than 14 days after initial immunization and DCs in LNs were evidently activated and matured. Furthermore, the Nv primed T and B cells for robust humoral and cellular immune responses after immunization. It also induced a ratio of IgG2a/IgG1 higher than that of NM2e to a considerable extent. Moreover, NM2e@DDAB/PLA Nv quickly restored body weight and improved survival of homo- and heterosubtype influenza challenged mice, and the cross-protection efficiency was over 90%. Collectively, our study demonstrated that NM2e@DDAB/PLA Nv could offer notable protection against homo- and heterosubtype influenza virus challenges, offering the potential for the development of a universal influenza vaccine.


Assuntos
Adjuvantes Imunológicos , Vacinas contra Influenza , Poliésteres , Compostos de Amônio Quaternário , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/administração & dosagem , Animais , Camundongos , Poliésteres/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Compostos de Amônio Quaternário/química , Feminino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Nanopartículas/química , Proteção Cruzada/imunologia , Adjuvantes de Vacinas/química , Proteínas da Matriz Viral/imunologia
3.
Clin Cosmet Investig Dermatol ; 15: 1489-1497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941858

RESUMO

Purpose: Our recent studies found a splice region mutation in C3 accompanied by a significantly increased C3 in psoriatic peripheral blood. Mesenchymal stem cells (MSCs) are a key immunological suppression cell. We further investigate the regulation of MSCs on C3 in psoriasis. Patients and Methods: We analyzed the C3 and its upstream S100A9, S100A8 and downstream MCP1 in psoriatic and control skin, and in normal human epidermal keratinocytes (NHEKs) co-cultured with psoriatic versus control dermal-derived mesenchymal stem cells (DMSCs) by mRNA, iTRAQ (isobaric tags for relative and absolute quantitative) and simple Western analysis. Results: The mRNA and Simple Western analysis showed that the expression of C3, S100A8 and S100A9 are upregulated in psoriatic lesion (C3: mRNA, 9.23-fold, p = 0.0092; protein, 3.56-fold, p = 0.0244. S100A8: mRNA, 28.35-fold, p = 0.0015; protein, 4.68-fold, p = 0.0215. S100A9: mRNA, 79.45-fold, p = 0.0066; protein, 12.42-fold, p > 0.05). Moreover, the iTRAQ showed that C3 and S100A9 were significantly increased in NHEKs after co-cultured with psoriatic DMSCs compared to that of control DMSCs (C3: 3.40-fold, p = 0, FDR = 0; S100A9: 2.30-fold, p = 9.86E-241, FDR = 6.50E-239), verified by Simple Western. However, the expression of S100A8 and MCP1 was slightly different between the two groups. Conclusion: Our results suggest that psoriatic DMSCs contribute to the increased C3 expression in psoriatic lesion via upregulating S100A9, providing the theoretical basis for the role of C3 and DMSCs in the pathogenesis of psoriasis.

4.
J Dermatol ; 47(7): 735-742, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32396270

RESUMO

Psoriasis is a recurrent inflammatory skin disease, affecting approximately 2% of the population. Previous studies have demonstrated that psoriatic dermal mesenchymal stem cells (DMSC) stimulated keratinocyte (KC) proliferation and that psoriasis exhibited missense SPRED1 mutations. To further investigate the molecular mechanism by which psoriatic DMSC stimulate KC proliferation, and the role of missense SPRED1 mutations in psoriasis, we assessed expression levels of miRNA, and both mRNA and protein of SPRED1 in normal human epidermal keratinocyte cells (NHEK) cocultured with either psoriatic or control DMSC. Expression levels of miRNA and mRNA were determined by RNA sequencing. Expression levels of spred1 protein were assessed using western blot analysis. Moreover, the variation in SPRED1 was also examined by whole-genome sequencing in 665 psoriatic patients, and verified by Sanger sequencing. Our results showed that coculture of NHEK with psoriatic DMSC induced 32 differentially expressed miRNA, in which expression levels of miR-1 increased approximately 16-fold over control DMSC-treated NHEK (P < 0.05). Likewise, expression levels of miR-21-3p increased over twofold (P < 0.05). Moreover, coculture of NHEK with psoriatic DMSC induced marked increase in expression levels of mRNA for MAPK3, CDC25B and CDC25C, while decreasing expression levels of SPRED1 mRNA and protein in comparison with control DMSC treatment (P < 0.05 for all between cocultured with control and psoriatic DMSC). Furthermore, psoriasis displayed non-synonymous mutation of SPRED1 enriched in exon 7: c.A881T:p.Y294F (chr15:38351210). These results suggest that dysregulation and mutations of SPRED1 may participate in the pathogenesis of psoriasis, including epidermal hyperproliferation.


Assuntos
MicroRNAs , Psoríase , Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células/genética , Humanos , Queratinócitos , MicroRNAs/genética , Psoríase/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA