Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426999

RESUMO

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Proteínas do Nucleocapsídeo , Viremia , Proteína Beclina-1 , Rhabdoviridae/fisiologia , Lisossomos , Autofagia
2.
J Virol ; 97(7): e0053223, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367226

RESUMO

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Assuntos
Doenças dos Peixes , Fatores Reguladores de Interferon , Proteínas Quinases Ativadas por Mitógeno , Infecções por Rhabdoviridae , Ubiquitinação , Proteínas Estruturais Virais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Estruturais Virais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação para Cima
3.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882518

RESUMO

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Interferons , Infecções por Vírus de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Interferons/antagonistas & inibidores , Interferons/biossíntese , Transdução de Sinais , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Retroalimentação Fisiológica , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
4.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727817

RESUMO

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Assuntos
Carpas , Doenças dos Peixes , Herpesviridae , Animais , Antivirais/farmacologia , Autofagia , Feminino , Imunidade Inata/genética , Masculino , Mamíferos , Peixe-Zebra/genética
5.
Plant Cell Environ ; 47(5): 1452-1470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38233741

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.


Assuntos
MicroRNAs , Oryza , MicroRNAs/genética , MicroRNAs/metabolismo , Cádmio/metabolismo , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Peptídeos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35418468

RESUMO

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Animais , Vírus de DNA , Fosfotransferases (Aceptor do Grupo Álcool) , Rhabdoviridae , Ubiquitinação , Proteínas Virais , Viremia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
7.
PLoS Pathog ; 17(2): e1009317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600488

RESUMO

The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.


Assuntos
Regulação da Expressão Gênica , Interferons/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Rhabdoviridae/virologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Fígado/imunologia , Fígado/virologia , Proteínas de Membrana/genética , Fosforilação , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/metabolismo , Ubiquitinação , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840365

RESUMO

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Assuntos
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética
9.
Chemistry ; 29(40): e202300991, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37143186

RESUMO

The preparation of diimidazolium salt HBDIM 1, a precursor for a di-NHCs ligand, from cheap and easily available agent hexabenzylhexaazaisowurtzitane (HBIW) is reported. Under basic conditions, HBDIM undergoes facile deprotonation to in situ generate CageCarbene, which could efficiently coordinate to transition-metals, such as, Au, Cu or Pd, to give the corresponding bimetallic complexes 2-4. These complexes were isolated and fully characterized, including X-ray diffraction of their single crystals. It was found that the steric hinderance of CageCarbene is similar to that of SIMes but smaller than that of IPr, and electronically, CageCarbene is a strong σ-donator similar to SIMes and a stronger σ-donator than IPr. Further studies showed that complexes 2-4 were highly reactive to catalyze up to 17 reactions. Control experiments utilizing a N-benzyl-substituted monoimidazolium salt showed much lower catalytic reactivity when it was bound to Au or Cu, but exhibited similar reactivity for the Pd complex. Kinetic studies showed that the low reactivity of the monodentate carbene-ligated Au or Cu complex was due to the low stability of the complex under the reaction conditions.

10.
J Immunol ; 207(3): 784-798, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290106

RESUMO

In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.


Assuntos
Proteínas de Peixes/genética , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética , Infecções por Rhabdoviridae/imunologia , Rhabdoviridae/fisiologia , Animais , Carpas , Cyprinidae , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Carpa Dourada , Células HEK293 , Humanos , Imunidade Inata/genética , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas de Peixe-Zebra/genética
11.
J Immunol ; 207(2): 512-522, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34193603

RESUMO

Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Ubiquitinação/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Proteólise , Transdução de Sinais/fisiologia , Ubiquitina/imunologia
12.
Platelets ; 34(1): 2237134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580876

RESUMO

Platelet extracellular vesicles (PEVs) are an emerging delivery vehi for anticancer drugs due to their ability to target and remain in the tumor microenvironment. However, there is still a lack of understanding regarding yields, safety, drug loading efficiencies, and efficacy of PEVs. In this study, various methods were compared to generate PEVs from clinical-grade platelets, and their properties were examined as vehicles for doxorubicin (DOX). Sonication and extrusion produced the most PEVs, with means of 496 and 493 PEVs per platelet (PLT), respectively, compared to 145 and 33 by freeze/thaw and incubation, respectively. The PEVs were loaded with DOX through incubation and purified by chromatography. The size and concentration of the PEVs and PEV-DOX were analyzed using dynamic light scattering and nanoparticle tracking analysis. The results showed that the population sizes and concentrations of PEVs and PEV-DOX were in the ranges of 120-150 nm and 1.2-6.2 × 1011 particles/mL for all preparations. The loading of DOX determined using fluorospectrometry was found to be 2.1 × 106, 1.7 × 106, and 0.9 × 106 molecules/EV using freeze/thaw, extrusion, and sonication, respectively. The internalization of PEVs was determined to occur through clathrin-mediated endocytosis. PEV-DOX were more efficiently taken up by MDA-MB-231 breast cancer cells compared to MCF7/ADR breast cancer cells and NIH/3T3 cells. DOX-PEVs showed higher anticancer activity against MDA-MB-231 cells than against MCF7/ADR or NIH/3T3 cells and better than acommercial liposomal DOX formulation. In conclusion, this study demonstrates that PEVs generated by PLTs using extrusion, freeze/thaw, or sonication can efficiently load DOX and kill breast cancer cells, providing a promising strategy for further evaluation in preclinical animal models. The study findings suggest that sonication and extrusion are the most efficient methods to generate PEVs and that PEVs loaded with DOX exhibit significant anticancer activity against MDA-MB-231 breast cancer cells.


What is the context?● Current synthetic drug delivery systems can have limitations and side effects.● Platelet extracellular vesicles (PEVs) are a natural and potentially safer alternative for delivering cancer drugs to tumors.● However, there is still a lack of understanding about how to produce PEVs and how effective they are in delivering drugs.What is new?● We compared different methods for producing PEVs from clinical-grade platelets and found that sonication and extrusion were the most effective methods.● The PEVs were loaded with a cancer drug called doxorubicin (DOX) and tested their ability to kill breast cancer cells.What is the impact?● PEVs loaded with DOX were effective at killing cancer cells, especially MDA-MB-231 breast cancer cells.● This study demonstrates that PEVs are a promising strategy for delivering cancer drugs to tumors and that sonication and extrusion are the most efficient methods for producing PEVs.● The results suggest that further evaluation of PEVs in preclinical animal models is warranted to determine their potential as a cancer drug delivery system.Abbreviations: ADP: adenosine diphosphate; bFGF: basic fibroblast growth factor; BSA: bovine serum albumin; CD41: platelet glycoprotein IIb; CD62P: P-selectin; CFDASE: 5-(and-6)-carboxyfluorescein diacetate: succinimidyl ester; CPLT: cryopreserved platelet; CPZ: chlorpromazine hydrochloride; CTC: circulating tumor cell; DMSO: dimethyl sulfoxide; DDS: drug delivery system; DOX: doxorubicin; EPR: enhanced permeability and retention; EV: extracellular vesicle; FBS: fetal bovine serum; GMP: good manufacturing practice; GF: growth factor; HER2: human epidermal growth factor receptor 2; HGF: hepatocyte growth factor; Lipo-DOX: liposomal doxorubicin; MDR: multi-drug resistance; MMP-2: matrix metalloproteinase-2; MP: microparticle; MSC: mesenchymal stromal cell; NP: nanoparticle; NTA: nanoparticle tracking analysis; PAR-1: protease activated receptor-1; PAS: platelet additive solution; PBS: phosphate-buffered saline; PC: platelet concentrate; PEG: polyethylene glycol; PEV: platelet-derived extracellular vesicle; DOX-PEV: doxorubicin-loaded platelet-derived extracellular vesicle-encapsulated; PFA: paraformaldehyde; PF4: platelet factor 4; P-gp: P-glycoprotein; PLT: platelet; PS: phosphatidylserine; SDS-PAGE: sodium dodecylsulfate polyacrylamide gel electrophoresis; SEM: scanning electron microscopy; TCIPA: tumor cell-induced PLT aggregation; TDDS: targeted drug delivery system; TEG: thromboelastography; TF: tissue factor; TF-EV: extracellular vesicle expressing tissue factor; TME: tumor microenvironment; TNBC: triple-negative breast cancer; TXA2: thromboxane-A2; VEGF: vascular endothelial growth factor; WHO: World Health Organization.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Nanopartículas , Camundongos , Animais , Plaquetas , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia
13.
Plant Cell Rep ; 42(12): 2023-2038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819387

RESUMO

KEY MESSAGE: OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.


Assuntos
Hemípteros , Oryza , Animais , Transcriptoma , Oryza/genética , Oryza/metabolismo , Regulação da Expressão Gênica , Metaboloma , Hemípteros/fisiologia , Regulação da Expressão Gênica de Plantas
14.
Altern Ther Health Med ; 29(6): 444-448, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295014

RESUMO

Background and Purpose: Chronic thromboembolic pulmonary hypertension (CTEPH) is the fourth most common form of pulmonary hypertension (PH), representing a pre-capillary manifestation of the disorder. This meta-analysis aims to evaluate the role of balloon pulmonary angioplasty (BPA) in the treatment of CTEPH. Methods: Our investigation was conducted using PubMed, Embase, Cochrane Library, and Web of Science platforms. Results: This meta-analysis includes the analysis of seven studies. BPA demonstrated a significant reduction in pulmonary arterial pressure in CTEPH patients (Mean difference (MD) = -9.80, 95% CI: -1.10 to -8.59, P < .00001). BPA also resulted in a decrease in pulmonary vascular resistance in CTEPH patients (MD = -4.70, 95% CI: -7.17 to -2.22, P = .0002). Moreover, BPA was associated with improved 6-minute walk distance of CTEPH patients (MD = 43.86, 95% CI: 26.19 to 61.53, P < .00001). Additionally, BPA led to a reduction in NT-proBNP levels in CTEPH patients (MD = -3.46, 95% CI: -10.63 to 3.71, p-value = 0.34). BPA also resulted in an improvement in the WHO functional class of CTEPH patients, with an increase in class I-II (MD = 0.28, 95% CI: 0.22 to 0.35, P < .00001) and a decrease in class III-IV (MD = 0.16, 95% CI: 0.10 to 0.26, P < .00001). Conclusion: These findings support the effectiveness of BPA as an alternative treatment option for CTEPH patients, leading to improvements in prognostic factors such as hemodynamics, functional ability, and biomarkers. BPA may offer enhanced therapeutic benefits and potentially serve as an alternative treatment for select CTEPH patients.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/terapia , Atividades Cotidianas , Caminhada , Angioplastia
15.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36866859

RESUMO

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Assuntos
Secas , Glycine max , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Zinco/metabolismo , Regulação da Expressão Gênica de Plantas
16.
J Integr Plant Biol ; 65(8): 1983-2000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066995

RESUMO

Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.


Assuntos
Glycine max , Sementes , Glycine max/metabolismo , Fenótipo , Sementes/genética , Sementes/metabolismo , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo
17.
Zhonghua Nan Ke Xue ; 29(6): 557-561, 2023 Jun.
Artigo em Zh | MEDLINE | ID: mdl-38602731

RESUMO

Circumcision is the simplest, most commonly used and most effective treatment for male prepuce overlength, phimosis and other diseases. There has also been a shift from traditional circumcision to simpler, faster, less invasive, instrument-based methods. This paper reviews the surgical methods of circumcision(Traditional circumcision、Electrosurgical circumcision、Laser circumcision、Sleeve circumcision, Dermotomy at the base of penis, Shangring, Gomco, Mogen, PlastiBell, PrePex, Alisklamp and Disposable circumcision suture apparatus), hoping to provide reference for clinicians to choose the appropriate circumcision methods for patients.


Assuntos
Circuncisão Masculina , Fimose , Humanos , Masculino , Pênis , Prepúcio do Pênis , Pelve , Fimose/cirurgia
18.
Zhonghua Nan Ke Xue ; 29(10): 910-915, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38639661

RESUMO

OBJECTIVE: To compare the efficacy and complications of radical surgery (RP) and radical radiotherapy (RRT). METHODS: The clinical data of patients diagnosed with localized prostate cancer in General Hospital of Eastern Theater Command with RP and RRT from January 2015 to December 2019, Observed and recorded patient preoperative and postoperative PSA levels, biochemical Relapse-free Survival and clinical Relapse-free Survival,and the occurrence of hematuria, urinary incontinence, erectile dysfunction, ankylurethria, diarrhea, hemoproctia and radiocystitis. RESULTS: A total of 150 patients with localized prostate cancer were included in this study, including 105 patients with RP and 45 patients undergoing RRT. There was no significant difference between the complication rates of hematuria, urinary incontinence, erectile dysfunction and ankylurethria(P>0.05).Patients in the RRT group had higher rates of diarrhea(20.00% vs 2.86%), hemoproctia(15.56% vs 1.90%) and radiocystitis(13.33% vs 0%) than those in the RP group, with significant differences (P<0.05). The 5-year bRFS was lower than that in the RP group (95.1% vs 90.7%), with no statistical significance (P=0.832); the 5-year cRFS in the RP group was lower than that in the RRT group (91.2% vs 89.6%), with no significant difference (P=0.971). CONCLUSION: The incidence of diarrhea, hemoproctia and radiocystitis was lower in the RP group than in the RRT group, and the recurrence-free survival was not significantly different between the two groups.


Assuntos
Disfunção Erétil , Neoplasias da Próstata , Incontinência Urinária , Masculino , Humanos , Disfunção Erétil/etiologia , Hematúria/etiologia , Recidiva Local de Neoplasia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Incontinência Urinária/etiologia , Diarreia/etiologia , Diarreia/cirurgia , Prostatectomia/efeitos adversos , Estudos Retrospectivos
19.
Zhonghua Nan Ke Xue ; 29(7): 615-618, 2023 Jul.
Artigo em Zh | MEDLINE | ID: mdl-38619408

RESUMO

OBJECTIVE: To analyze the proper time and method for treatment of prostatic abscess (PA). METHODS: This is a retrospective study that included 18 patients diagnosed with and treated for prostatic abscess between February 2017 and July 2022. After obtaining data from the patients' medical records, we analyzed their clinical features as well as the therapeutic methods opted for and their effectiveness. Results: Of the 18 patients included, one achieved a full recovery after a spontaneous rupture of the abscess. Transrectal ultrasound (TRUS)-guided aspiration was performed in the remaining 17 patients, of whom 14 had a complete resolution after this procedure whereas 3 experienced recurrence. The recurrent cases were successfully managed with transurethral (TU) de-roofing. CONCLUSION: TRUS-guided aspiration is a treatment modality with a marked curative effect for simple PAs. For refractory abscesses (recurrent, multifocal, incomplete or unsuccessful drainage) or PA located near the urethra, TU de-roofing can be considered as a first choice to shorten the course of the disease and alleviate the medical treatment expenses due to recurrence.


Assuntos
Abscesso , Doenças Prostáticas , Humanos , Masculino , Abscesso/cirurgia , Estudos Retrospectivos , Drenagem , Doenças Prostáticas/cirurgia , Uretra
20.
Zhonghua Nan Ke Xue ; 29(8): 711-715, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-38619517

RESUMO

OBJECTIVE: To explore the safety and effectiveness of the "scarless" circumcision technique (a modified sleeve-style circumcision method) that preserves the original appearance, providing a more suitable surgical option for patients with redundant prepuce. METHODS: Clinical data of patients who underwent "scarless" circumcision at the Eastern Theater Command General Hospital from April 2022 to March 2023 were collected, with patients who underwent conventional circumcision (single-use stapler method) during the same period serving as the control group. The two groups were compared in terms of operation time, postoperative recovery time, incidence of postoperative complications, and patient satisfaction rates after surgery. RESULTS: The operation time for the study group was significantly longer than that of the control group; there was no significant difference in pain scores on the day of surgery between the two groups, but the pain scores on postoperative days 1, 3, and 7 were lower in the study group than in the control group; the postoperative recovery time was significantly shorter in the study group than in the control group; regarding postoperative complications: the control group had higher rates of edema, incision infection, and wound dehiscence than the study group. A satisfaction survey conducted 30 days postoperatively showed higher satisfaction in the study group than in the control group. CONCLUSION: The "scarless" circumcision technique that preserves the original appearance is safe and effective for patients with simple redundant prepuce and is a new surgical method with value for widespread adoption.


Assuntos
Circuncisão Masculina , Masculino , Humanos , Duração da Cirurgia , Satisfação do Paciente , Período Pós-Operatório , Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA