Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017705

RESUMO

The ability to manipulate magnetic states by a low electric current represents a fundamental desire in spintronics. In recent years, two-dimensional van der Waals (vdW) magnetic materials have attracted an extensive amount of attention due to their appreciable spin-orbit torque effect. However, for most known vdW ferromagnets, their relatively low Curie temperatures (TC) limit their applications. Consequently, low-power vdW spintronic devices that can operate at room temperature are in great demand. In this research, we fabricate nanodevices based on a solitary thin flake of vdW ferromagnet Fe3GaTe2, in which we successfully achieve nonvolatile and highly efficient magnetization switching by small currents at room temperature. Notably, the switching current density and the switching power dissipation are as low as 1.7 × 105 A/cm2 and 1.6 × 1013 W/m3, respectively, with an external magnetic field of 80 Oe; both are much reduced compared to those of conventional magnet/heavy metal heterostructure devices and other vdW devices.

2.
Nano Lett ; 24(20): 5984-5992, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728101

RESUMO

Addressing the need for modulated spin configurations is crucial, as they serve as the foundational building blocks for next-generation spintronics, particularly in atomically thin structures and at room temperature. In this work, we realize intrinsic ferromagnetism in monolayer flakes and tunable ferro-/antiferromagnetism in (Fe0.56Co0.44)5GeTe2 antiferromagnets. Remarkably, the ferromagnetic ordering (≥1 L) and antiferromagnetic ordering (≥4 L) remain discernible up to room temperature. The TC (∼310 K) of the monolayer flakes sets a record high for known exfoliated monolayer van der Waals magnets. Within the framework of A-type antiferromagnetism, a notable odd-even layer-number effect at elevated temperatures (T = 150 K) is observed. Of particular interest is the strong ferromagnetic order in even-layer flakes at low temperatures. The intricate interplay among magnetic field strength, layer number, and temperature gives rise to a diverse array of phenomena, holding promise not only for new physics but also for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA