Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; PP2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088492

RESUMO

Semi-supervised learning (SSL) has been proven beneficial for mitigating the issue of limited labeled data, especially on volumetric medical image segmentation. Unlike previous SSL methods which focus on exploring highly confident pseudo-labels or developing consistency regularization schemes, our empirical findings suggest that differential decoder features emerge naturally when two decoders strive to generate consistent predictions. Based on the observation, we first analyze the treasure of discrepancy in learning towards consistency, under both pseudo-labeling and consistency regularization settings, and subsequently propose a novel SSL method called LeFeD, which learns the feature-level discrepancies obtained from two decoders, by feeding such information as feedback signals to the encoder. The core design of LeFeD is to enlarge the discrepancies by training differential decoders, and then learn from the differential features iteratively. We evaluate LeFeD against eight state-of-the-art (SOTA) methods on three public datasets. Experiments show LeFeD surpasses competitors without any bells and whistles, such as uncertainty estimation and strong constraints, as well as setting a new state of the art for semi-supervised medical image segmentation. Code has been released at https://github.com/maxwell0027/LeFeD.

2.
Med Image Anal ; 99: 103342, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39260034

RESUMO

Ovarian cancer, predominantly epithelial ovarian cancer (EOC), is a global health concern due to its high mortality rate. Despite the progress made during the last two decades in the surgery and chemotherapy of ovarian cancer, more than 70% of advanced patients are with recurrent cancer and disease. Bevacizumab is a humanized monoclonal antibody, which blocks VEGF signaling in cancer, inhibits angiogenesis and causes tumor shrinkage, and has been recently approved by the FDA as a monotherapy for advanced ovarian cancer in combination with chemotherapy. Unfortunately, Bevacizumab may also induce harmful adverse effects, such as hypertension, bleeding, arterial thromboembolism, poor wound healing and gastrointestinal perforation. Given the expensive cost and unwanted toxicities, there is an urgent need for predictive methods to identify who could benefit from bevacizumab. Of the 18 (approved) requests from 5 countries, 6 teams using 284 whole section WSIs for training to develop fully automated systems submitted their predictions on a test set of 180 tissue core images, with the corresponding ground truth labels kept private. This paper summarizes the 5 qualified methods successfully submitted to the international challenge of automated prediction of treatment effectiveness in ovarian cancer using the histopathologic images (ATEC23) held at the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023 and evaluates the methods in comparison with 5 state of the art deep learning approaches. This study further assesses the effectiveness of the presented prediction models as indicators for patient selection utilizing both Cox proportional hazards analysis and Kaplan-Meier survival analysis. A robust and cost-effective deep learning pipeline for digital histopathology tasks has become a necessity within the context of the medical community. This challenge highlights the limitations of current MIL methods, particularly within the context of prognosis-based classification tasks, and the importance of DCNNs like inception that has nonlinear convolutional modules at various resolutions to facilitate processing the data in multiple resolutions, which is a key feature required for pathology related prediction tasks. This further suggests the use of feature reuse at various scales to improve models for future research directions. In particular, this paper releases the labels of the testing set and provides applications for future research directions in precision oncology to predict ovarian cancer treatment effectiveness and facilitate patient selection via histopathological images.

3.
IEEE Trans Med Imaging ; 42(9): 2678-2689, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030860

RESUMO

The rapid advances in deep learning-based computational pathology and radiology have demonstrated the promise of using whole slide images (WSIs) and radiology images for survival prediction in cancer patients. However, most image-based survival prediction methods are limited to using either histology or radiology alone, leaving integrated approaches across histology and radiology relatively underdeveloped. There are two main challenges in integrating WSIs and radiology images: (1) the gigapixel nature of WSIs and (2) the vast difference in spatial scales between WSIs and radiology images. To address these challenges, in this work, we propose an interpretable, weakly-supervised, multimodal learning framework, called Hierarchical Multimodal Co-Attention Transformer (HMCAT), to integrate WSIs and radiology images for survival prediction. Our approach first uses hierarchical feature extractors to capture various information including cellular features, cellular organization, and tissue phenotypes in WSIs. Then the hierarchical radiology-guided co- attention (HRCA) in HMCAT characterizes the multimodal interactions between hierarchical histology-based visual concepts and radiology features and learns hierarchical co- attention mappings for two modalities. Finally, HMCAT combines their complementary information into a multimodal risk score and discovers prognostic features from two modalities by multimodal interpretability. We apply our approach to two cancer datasets (365 WSIs with matched magnetic resonance [MR] images and 213 WSIs with matched computed tomography [CT] images). Our results demonstrate that the proposed HMCAT consistently achieves superior performance over the unimodal approaches trained on either histology or radiology data alone, as well as other state-of-the-art methods.


Assuntos
Radiologia , Radiografia , Tomografia Computadorizada por Raios X , Técnicas Histológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA