Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 19(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940687

RESUMO

Mangrove actinomycetia are considered one of the promising sources for discovering novel biologically active compounds. Traditional bioactivity- and/or taxonomy-based methods are inefficient and usually result in the re-discovery of known metabolites. Thus, improving selection efficiency among strain candidates is of interest especially in the early stage of the antibiotic discovery program. In this study, an integrated strategy of combining phylogenetic data and bioactivity tests with a metabolomics-based dereplication approach was applied to fast track the selection process. A total of 521 actinomycetial strains affiliated to 40 genera in 23 families were isolated from 13 different mangrove soil samples by the culture-dependent method. A total of 179 strains affiliated to 40 different genera with a unique colony morphology were selected to evaluate antibacterial activity against 12 indicator bacteria. Of the 179 tested isolates, 47 showed activities against at least one of the tested pathogens. Analysis of 23 out of 47 active isolates using UPLC-HRMS-PCA revealed six outliers. Further analysis using the OPLS-DA model identified five compounds from two outliers contributing to the bioactivity against drug-sensitive A. baumannii. Molecular networking was used to determine the relationship of significant metabolites in six outliers and to find their potentially new congeners. Finally, two Streptomyces strains (M22, H37) producing potentially new compounds were rapidly prioritized on the basis of their distinct chemistry profiles, dereplication results, and antibacterial activities, as well as taxonomical information. Two new trioxacarcins with keto-reduced trioxacarcinose B, gutingimycin B (16) and trioxacarcin G (20), together with known gutingimycin (12), were isolated from the scale-up fermentation broth of Streptomyces sp. M22. Our study demonstrated that metabolomics tools could greatly assist classic antibiotic discovery methods in strain prioritization to improve efficiency in discovering novel antibiotics from those highly productive and rich diversity ecosystems.


Assuntos
Actinobacteria/genética , Antibacterianos/farmacologia , Áreas Alagadas , Animais , Antibacterianos/química , Organismos Aquáticos , China , Avaliação Pré-Clínica de Medicamentos , Metabolômica , Testes de Sensibilidade Microbiana
2.
J Asian Nat Prod Res ; 23(5): 498-503, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32441112

RESUMO

A new andirobin-type limonoid with modified furan ring, khaysenelide K (1), together with a known analogue (2), was isolated from the stem barks of Khaya senegalensis. The structure and absolute configuration of 1 were elucidated by a combination of 1D and 2D NMR, HRESIMS, and single-crystal X-ray diffraction using mirror Cu-Kα radiation. Compound 1 showed moderate NO inhibitory activity in LPS-activated RAW 264.7 macrophages with IC50 value of 27.74 ± 0.68 µM.[Formula: see text].


Assuntos
Limoninas , Meliaceae , Furanos , Limoninas/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
3.
Int J Syst Evol Microbiol ; 70(10): 5445-5452, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32886595

RESUMO

A Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-mycelium-forming, motile, rod-shaped with one polar flagellum actinobacterium, designated E918T, was isolated from a desert soil collected in Cholistan desert, Pakistan. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain E918T belonged to the genus Arthrobacter and was most closely related to Arthrobacter deserti CGMCC 1.15091T (97.2 % similarity). The peptidoglycan was of the A3α type and the whole-cell sugar profile was found to contain galactose. The major menaquinone was MK-9(H2). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unidentified glycolipids. The major fatty acids identified were anteiso-C15 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 68.69 mol%. The digital DNA-DNA hybridization and average nucleotide identity values between strain E918T and A. deserti CGMCC 1.15091T were 28.0 and 83.4%, respectively. On the basis of its phylogenetic, phenotypic and chemotaxonomic features, strain E918T was considered to represent a novel species of the genus Arthrobacter, for which the name Arthrobacter mobilis sp. nov. is proposed. The type strain of Arthrobacter mobilis is E918T (=JCM 33392T=CGMCC 1.16978T).


Assuntos
Arthrobacter/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Arthrobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Paquistão , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Int J Syst Evol Microbiol ; 70(5): 3179-3185, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32302275

RESUMO

A Gram-stain-positive, aerobic, non-motile and non-spore-forming actinobacterium, designated as F435T, was isolated from soil sample collected from the Cholistan Desert, Pakistan. The taxonomic position of the strain was established by using a polyphasic taxonomic approach. The cells were coccoid-shaped and found in single or arrangement of pairs. The novel strain grew at 15‒37 °C (optimum, 25‒30 °C), pH 7‒11 (optimum, pH 7-8) and in the presence of 0‒8% (w/v) NaCl (optimum, 0 %). Results of blast analysis based on 16S rRNA gene sequences showed that Auraticoccus monumenti MON 2.2T was its closest relative with 97.4 % similarity followed by Desertihabitans aurantiacus CPCC 204711T (95.2 %). In phylogenetic trees, strain F435T formed a robust cluster with the only member of the genus Auraticoccus. The peptidoglycan isomer present in the cell wall was ll-diaminopimelic acid. The major fatty acid was determined to be anteiso-C15 : 0. Characteristic polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipids and glycolipids. The predominant menaquinone was MK-9(H4). The genomic G+C content was calculated as 73.5 mol%. The digital DNA-DNA hybridization (GGDC) and average nucleotide identity (ANI) values between strain F435T and A. monumenti MON 2.2T were 24.6 and 81.8 %, respectively. Based on the results of phenotypic, chemotaxonomic, phylogenetic and phylogenomic analyses, strain F435T represents a novel specie of the genus Auraticoccus, for which the name Auraticoccus cholistanensis sp. nov. is proposed. The type strain is F435T (=JCM 33648T=CGMCC 1.17443T). The description of the genus Auraticoccus has also been emended.


Assuntos
Clima Desértico , Filogenia , Propionibacteriaceae/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Paquistão , Peptidoglicano/química , Fosfolipídeos/química , Propionibacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Syst Appl Microbiol ; 43(6): 126150, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33099259

RESUMO

Two novel actinobacterial strains, designated as E257T and K478T, were isolated from hyper-arid soil samples collected in Cholistan Desert, Pakistan. Comparative analysis of 16S rRNA genes showed that strains E257T and K478T were assigned to the genus Motilibacter, being their closest relative M. rhizosphaerae RS-16T with 97.3% and 96.7% similarities, respectively. The sequence similarity between strain E257T and K478T was 98.9%. Phylogenetic analysis based on 16S rRNA gene sequences and phylogenomic analysis based on multiple genes of conserved core proteins exhibited that these two strains belonged to the genus Motilibacter and formed a robust cluster separated from the two type species of the genus Motilibacter. Average Nucleotide Identity (ANI), Average Amino acid Identity (AAI), digital DNA-DNA hybridization (dDDH) values and Percentage of Conserved Proteins (POCP) calculated from the complete genome sequences indicated strains E257T and K478T were assigned into genus Motilibacter but clearly separated from each other and from the other species of the genus Motilibacter with values below the thresholds for species delineation. The two isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Motilibacter and also confirmed the differentiation from their closest species. The obtained results demonstrated that strains E257T and K478T represent two novel species of the genus Motilibacter, for which the names Motilibacter desertisp. nov. (type strain E257T = JCM 33651T = CGMCC 1.17159T) and Motilibacter aurantiacus sp. nov. (type strain K478T =JCM 33652T =CGMCC 1.17229T) are proposed.


Assuntos
Actinobacteria/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Paquistão , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
Antibiotics (Basel) ; 8(4)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783564

RESUMO

Rediscovery of known antibiotics from actinobacteria, especially Streptomyces, has become a bottleneck issue. Nowadays, more specific identification and dereplication could be acquired by a combination of modern analytic techniques with various databases. In this study, 261 actinobacterial strains were isolated from 8 mangrove soil samples by culture-dependent method. A total of 83 strains were selected to evaluate antibacterial activities and mechanisms by disc diffusion method and a unique double fluorescent protein reporter system (pDualrep2), respectively. Thirty-two strains exhibited antagonistic activity against at least one of the "ESKAPE" pathogens. Four Streptomyces strains (B475, B486, B353, and B98) showed strong inhibitory activity against Gram-positive bacteria and induced DNA damage SOS response. One Micromonospora strain (B704) exhibited inhibitory activity against several pathogens and induced attenuation-based translational inhibitors reporter. Seven members of quinoxaline-type antibiotics including quinomycin A, quinomycin monosulfoxide, and other five putative new analogues were found from the culture broth of strain B475 by a combination of anti-MRSA guide, HPTLC, HPLC-UV, and UPLC-UV-HRESIMS/MS analysis, Chemspider searching, and MS/MS-based molecular networking analysis. In conclusion, this study not only demonstrated that mangrove is a rich source of actinobacteria with the potentially new antibiotics but showed rapid dereplication of known antibiotics in the early stage can improve efficiency for the discovery of new antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA