Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2710-2721, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812171

RESUMO

Studies have reported that the hemostatic effect of Sanguisorbae Radix(SR) is significantly enhanced after processing with charcoal. However, the standard components(tannins and gallic acid) specified in the Chinese Pharmacopeia decrease in charcoal-fried Sanguisorbae Radix(CSR), which is contrast to the enhancement of the hemostatic effect. Therefore, this study aimed to optimize the charcoal-frying process of SR based on its hemostatic efficacy and comprehensively analyze the components of SR and its processed products, thus exploring the material basis for the hemostatic effect. The results indicated that SR processed at 250 ℃ for 14 min(14-min CSR) not only complied with the description in the Chinese Pharmacopeia but also demonstrated improved blood-coagulating and blood-adsorbing effects compared with raw SR(P<0.05). Moroever, 14-min CSR reduced the bleeding time in the rat models of tail snipping, liver bleeding, and muscle injury, surpassing both raw and excessively fried SR(16 min processed) as well as tranexamic acid(P<0.05). Ellagitannin, ellagic acid, methyl gallate, pyrogallic acid, protocatechuic acid, Mg, Ca, Mn, Cu, and Zn contributed to the hemostatic effect of CSR over SR. Among these substances, ellagitannin, ellagic acid, Mg, and Ca had high content in the 14 min CSR, reaching(106.73±14.87),(34.86±4.43),(2.81±0.23), and(1.21±0.23) mg·g~(-1), respectively. Additionally, the color difference value(ΔE~*ab) of SR processed to different extents was correlated with the content of the aforementioned hemostatic substances. In summary, this study optimized the charcoal-frying process as 250 ℃ for 14 min for SR based on its hemostatic effect. Furthermore, ellagic acid and/or the powder chromaticity are proposed as indicators for the processing and quality control of CSR.


Assuntos
Carvão Vegetal , Medicamentos de Ervas Chinesas , Hemostáticos , Ratos Sprague-Dawley , Sanguisorba , Animais , Ratos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Hemostáticos/farmacologia , Hemostáticos/química , Sanguisorba/química , Carvão Vegetal/química , Masculino , Culinária , Coagulação Sanguínea/efeitos dos fármacos , Humanos
2.
Zhongguo Zhong Yao Za Zhi ; 48(2): 492-506, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36725239

RESUMO

This study aimed to investigate the effective substances and mechanism of Yishen Guluo Mixture in the treatment of chronic glomerulonephritis(CGN) based on metabolomics and serum pharmacochemistry. The rat model of CGN was induced by cationic bovine serum albumin(C-BSA). After intragastric administration of Yishen Guluo Mixture, the biochemical indexes related to renal function(24-hour urinary protein, serum urea nitrogen, and creatinine) were determined, and the efficacy evaluations such as histopathological observation were carried out. The serum biomarkers of Yishen Guluo Mixture in the treatment of CGN were screened out by ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) combined with multivariate statistical analysis, and the metabolic pathways were analyzed. According to the mass spectrum ion fragment information and metabolic pathway, the components absorbed into the blood(prototypes and metabolites) from Yishen Guluo Mixture were identified and analyzed by using PeakView 1.2 and MetabolitePilot 2.0.4. By integrating metabolomics and serum pharmacochemistry data, a mathematical model of correlation analysis between serum biomarkers and components absorbed into blood was constructed to screen out the potential effective substances of Yishen Guluo Mixture in the treatment of CGN. Yishen Guluo mixture significantly decreased the levels of 24-hour urinary protein, serum urea nitrogen, and creatinine in rats with CGN, and improved the pathological damage of the kidney tissue. Twenty serum biomarkers of Yishen Guluo Mixture in the treatment of CGN, such as arachidonic acid and lysophosphatidylcholine, were screened out, involving arachidonic acid metabolism, glycerol phosphatide metabolism, and other pathways. Based on the serum pharmacochemistry, 8 prototype components and 20 metabolites in the serum-containing Yishen Guluo Mixture were identified. According to the metabolomics and correlation analysis of serum pharmacochemistry, 12 compounds such as genistein absorbed into the blood from Yishen Guluo Mixture were selected as the potential effective substances for the treatment of CGN. Based on metabolomics and serum pharmacochemistry, the effective substances and mechanism of Yishen Guluo Mixture in the treatment of CGN are analyzed and explained in this study, which provides a new idea for the development of innovative traditional Chinese medicine for the treatment of CGN.


Assuntos
Medicamentos de Ervas Chinesas , Glomerulonefrite , Animais , Ratos , Ácido Araquidônico , Biomarcadores/sangue , Proteínas Sanguíneas , Cromatografia Líquida de Alta Pressão , Creatinina , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glomerulonefrite/sangue , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Metabolômica , Ureia , Doença Crônica , Modelos Animais de Doenças , Misturas Complexas/farmacologia , Misturas Complexas/uso terapêutico
3.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3806-3814, 2023 Jul.
Artigo em Zh | MEDLINE | ID: mdl-37475072

RESUMO

The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Magnolia , Zingiber officinale , Magnolia/química , Medicamentos de Ervas Chinesas/química , Compostos de Bifenilo/química , Lignanas/química
4.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1249-1263, 2023 Mar.
Artigo em Zh | MEDLINE | ID: mdl-37005809

RESUMO

The chemical components of Huanglian Decoction were identified by ultra-performance liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) technology. The gradient elution was conducted in Agilent ZORBAX Extend-C_(18) column(2.1 mm×100 mm, 1.8 µm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) at a flow rate of 0.3 mL·min~(-1) and the column temperature of 35 ℃. The MS adopted the positive and negative ion mode of electrospray ionization(ESI), and the MS data were collected under the scanning range of m/z 100-1 500. Through high-resolution MS data analysis, combined with literature comparison and confirmation of reference substances, this paper identified 134 chemical components in Huanglian Decoction, including 12 alkaloids, 23 flavonoids, 22 terpenes and saponins, 12 phenols, 7 coumarins, 12 amino acids, 23 organic acids, and 23 other compounds, and the medicinal sources of the compounds were ascribed. Based on the previous studies, 7 components were selected as the index components. Combined with the network pharmacology research and analysis me-thods, the protein and protein interaction(PPI) network information of the intersection targets was obtained through the STRING 11.0 database, and 20 core targets of efficacy were screened out. In this study, UPLC-Q-TOF-MS/MS technology was successfully used to comprehensively analyze and identify the chemical components of Huanglian Decoction, and the core targets of its efficacy were discussed in combination with network pharmacology, which laid the foundation for clarifying the material basis and quality control of Huanglian Decoction.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Farmacologia em Rede , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Tecnologia
5.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4187-4200, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-37802787

RESUMO

This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1ß, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1ß, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Ginsenosídeos , Humanos , Fator de Necrose Tumoral alfa , Caspase 3 , Metaloproteinase 9 da Matriz , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Cápsulas , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
6.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1518-1525, 2023 Mar.
Artigo em Zh | MEDLINE | ID: mdl-37005839

RESUMO

Since Curcumae Radix decoction pieces have multiple sources, it is difficult to distinguish depending on traditional cha-racters, and the mixed use of multi-source Curcumae Radix will affect its clinical efficacy. Heracles Neo ultra-fast gas phase electronic nose was used in this study to quickly identify and analyze the odor components of 40 batches of Curcumae Radix samples from Sichuan, Zhejiang, and Guangxi. Based on the odor fingerprints established for Curcumae Radix decoction pieces of multiple sources, the odor components was identified and analyzed, and the chromatographic peaks were processed and analyzed to establish a rapid identification method. Principal component analysis(PCA), discriminant factor analysis(DFA), and soft independent modeling cluster analysis(SIMCA) were constructed for verification. At the same time, one-way analysis of variance(ANOVA) combined with variable importance in projection(VIP) was employed to screen out the odor components with P<0.05 and VIP>1, and 13 odor components such as ß-caryophyllene and limonene were hypothesized as the odor differential markers of Curcumae Radix decoction pieces of diffe-rent sources. The results showed that Heracles Neo ultra-fast gas phase electronic nose can well analyze the odor characteristics and rapidly and accurately discriminate Curcumae Radix decoction pieces of different sources. It can be applied to the quality control(e.g., online detection) in the production of Curcumae Radix decoction pieces. This study provides a new method and idea for the rapid identification and quality control of Curcumae Radix decoction pieces.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Nariz Eletrônico , China , Raízes de Plantas/química , Limoneno/análise , Cromatografia Líquida de Alta Pressão
7.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5003-5013, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37802842

RESUMO

In this study, CM-5 spectrophotometer and Heracles NEO ultra-fast gas-phase electronic nose were used to analyze the changes in color and odor of vinegar-processed Cyperi Rhizoma(VPCR) pieces. Various analysis methods such as DFA and partial least squares discriminant analysis(PLS-DA) were combined to identify different processing degrees and quantify the end point of processing. The results showed that with the increase in vinegar processing, the brightness parameter L~* of VPCR pieces decreased gradua-lly, while the red-green value a~* and yellow-blue value b~* initially increased and reached their maximum at 8 min of processing, followed by a gradual decrease. A discriminant model based on the color parameters L~*, a~*, and b~* was established(with a discrimination accuracy of 98.5%), which effectively differentiated different degrees of VPCR pieces. Using the electronic nose, 26 odor components were identified from VPCR samples at different degrees of vinegar processing. DFA and PLS-DA models were established for different degrees of VPCR pieces. The results showed that the 8-min processed samples were significantly distinct from other samples. Based on variable importance in projection(VIP) value greater than 1, 10 odor components, including 3-methylfuran, 2-methylbuty-raldehyde, 2-methylpropionic acid, furfural, and α-pinene, were selected as odor markers for differentiating the degrees of vinegar processing in VPCR. By combining the changes in color and the characteristic odor components, the optimal processing time for VPCR was determined to be 8 min. This study provided a scientific basis for the standardization of vinegar processing techniques for VPCR and the improvement of its quality standards and also offered new methods and ideas for the rapid identification and quality control of the end point of processing for other traditional Chinese medicine.


Assuntos
Ácido Acético , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Rizoma/química , Controle de Qualidade , Eletrônica
8.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2767-2777, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35718497

RESUMO

The present study explored the effective components, functional targets, and mechanism of Sparganii Rhizoma(vinegar-processed Sparganii Rhizoma) in the treatment of hyperlipidemia based on network pharmacology and experimental verification. In the network pharmacology, the screening of active components, target prediction, and pathway enrichment analysis of Sparganii Rhizoma were carried out, followed by the comparison with targets and pathways related to hyperlipidemia. In the experimental verification, the hyperlipidemia model in rats was induced to detect hemorheological parameters and coagulation function. The liver index was observed by HE staining, and PCR technology was used to verify the results of the network pharmacological analysis. Compared with the model group, the Sparganii Rhizoma and vinegar-processed Sparganii Rhizoma groups showed decreased liver index(P<0.05), reduced liver lipid deposition, dwindled serum low-density lipoprotein cholesterol(LDL-c) level(P<0.05), diminished blood viscosity, and increased prothrombin time(PT), thrombin time(TT), and activated partial thrombin time(APTT)(P<0.05). As revealed by the PCR assay, Sparganii Rhizoma could affect LDL-c and high-density lipoprotein cholesterol(HDL-c) levels and reduce the inhibitory effect of cholesterol ester transporter by regulating the expression of Apol2, Apof, and Stab2, thereby treating hyperlipidemia. Vinegar-processed Sparganii Rhizoma could enhance triglyceride metabolism and cholesterol reversal by regulating the expression of Hmgcr, Hmgcs2, Abca1, Abcg1, Cyp7 b1, and Stab2. Compared with the Sparganii Rhizoma, the vinegar-processed one was potent in treating hyperlipidemia. The active components of Sparganii Rhizoma in the treatment of hyperlipidemia may be L-alpha-palmitin,(1S,2S)-1,2-bis(2-furyl)ethane-1,2-diol, cis-zimtsaeure, o-acetyl-p-cresol, sanleng, and 9-hexadecenoic acid. Based on the network pharmacology and experimental verification, this study preliminarily explored the potential active components and possible mechanism of Sparganii Rhizoma in the treatment of hyperlipidemia, which is expected to provide a certain basis for in-depth research on active components, mechanism, and clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Ácido Acético , Animais , Colesterol , LDL-Colesterol/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/genética , Farmacologia em Rede , Ratos
9.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2964-2974, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35718518

RESUMO

In this study, UPLC was used to establish the characteristic chromatograms of Curcumae Radix from different origins(LSYJ, WYJ, HSYJ, and GYJ) and the content determination method of 11 chemical components. The evaluation of characteristic chromatogram similarity, cluster analysis(CA), principal component analysis(PCA), and orthogonal partial least square discriminant analysis(OPLS-DA) were combined to evaluate the quality of Curcumae Radix from four origins. LSYJ, WYJ, HSYJ, and GYJ showed 15, 17, 15, and 10 characteristic peaks, respectively, and 8 of the peaks were identified. The characteristic chromatograms of Curcumae Radix samples(except for GYJ07) from the same origin showed the similarity greater than 0.854. The 11 chemical components had different content among the samples from four origins. Curcumenol, furanodienone, and isocurcumenol were rich in LSYJ; hydroxyisogermafurenolide, curdione, and furanodiene had high content in WYJ; gemacrone, ß-elemene, bisdemethoxycurcumin, demethoxycurcumin, and curcumin were rich in HSYJ; all the components had low content in GYJ. The chemometric analysis showed that CA, PCA, and OPLS-DA could accurately classify the four origins of Curcumae Radix into four categories, and five different quality markers, namely furanodienone, curcumenol, curdione, hydroxyisogermafurenolide, and furanodiene, were screened out by OPLS-DA. UPLC in combination with multicomponent content determination is simple, rapid, reproducible, and specific, which can provide reference for the quality control and identification of Curcumae Radix from four origins.


Assuntos
Medicamentos de Ervas Chinesas , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Raízes de Plantas/química , Controle de Qualidade
10.
Zhongguo Zhong Yao Za Zhi ; 47(1): 24-35, 2022 Jan.
Artigo em Zh | MEDLINE | ID: mdl-35178908

RESUMO

Derived from Curcuma plants, Curcumae Longae Rhizoma, Curcumae Rhizoma, Wenyujin Rhizoma Concisum, and Curcumae Radix are common blood-activating and stasis-resolving medicinals in clinical practice, which are mainly used to treat amenorrhea, dysmenorrhea, chest impediment and heart pain, and rheumatic arthralgia caused by blood stasis block. According to modern research, the typical components in medicinals derived from Curcuma plants, like curcumin, demethoxycurcumin, bisdemethoxycurcumin, curdione, germacrone, curcumol, and ß-elemene, have the activities of hemorheology improvement, anti-platelet aggregation, anti-thrombosis, anti-inflammation, anti-tumor, and anti-fibrosis, thereby activating blood and resolving stasis. However, due to the difference in origin, medicinal part, processing, and other aspects, the efficacy and clinical application are different. The efficacy-related substances behind the difference have not yet been systematically studied. Thus, focusing on the efficacy-related substances, this study reviewed the background, efficacy and clinical application, efficacy-related substances, and "prediction-identification-verification" research method of blood-activating and stasis-resolving medicinals derived from Curcuma plants, which is expected to lay a theoretical basis for the future research on the "similarities and differences" of such medicinals based on integrated evidence chain and to guide the scientific and rational application of them in clinical practice.


Assuntos
Curcumina , Medicamentos de Ervas Chinesas , Curcuma , Raízes de Plantas , Agregação Plaquetária , Rizoma
11.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3781-3787, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850835

RESUMO

Since the current identification method for Paeoniae Radix Alba is complex in operation and long time-consuming with high requirements for technicians, the present study employed Heracles NEO ultra-fast gas phase electronic nose(E-nose) technology to identify raw and sulfur-fumigated Paeoniae Radix Alba decoction pieces in order to establish a rapid identification method for sulfur-fumigated Paeoniae Radix Alba. The odors of raw Paeoniae Radix Alba and its sulfur-fumigated products were analyzed by Heracles NEO ultra-fast gas phase E-nose to obtain the odor chromatographic information. The chemometric model was established, and the data were processed by principal component analysis(PCA), discriminant function analysis(DFA), soft independent modeling of class analogy(SIMCA), and partial least squares discriminant analysis(PLS-DA). The differential compounds of raw and sulfur-fumigated samples were qualitatively analyzed based on the Kovats retention index and Arochembase. As revealed by the comparison of gas chromatograms of raw and sulfur-fumigated Paeoniae Radix Alba, the heights of several peaks in the chromatograms before and after sulfur fumigation changed significantly. The peak(No.8) produced by ethylbenzene disappeared completely due to sulfonation reaction in the process of sulfur fumigation, indicating that ethylbenzene may be the key component in the identification of Paeoniae Radix Alba and its sulfur-fumigated products. In PCA, DFA, SIMCA, and PLS-DA models, the two types of samples were separated into two different regions, indicating that the established models can clearly distinguish between raw and sulfur-fumigated Paeoniae Radix Alba. The results showed that Heracles NEO ultra-fast gas phase E-nose technology could realize the rapid identification of raw and sulfur-fumigated Paeoniae Radix Alba, which provides a new method and idea for the rapid identification of sulfur-fumigated Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Medicamentos de Ervas Chinesas/química , Nariz Eletrônico , Fumigação/métodos , Paeonia/química , Extratos Vegetais , Enxofre/química
12.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2090-2098, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35531725

RESUMO

The methods for determining the characteristic chromatogram and index components content of Xuanfu Daizhe Decoction were established to provide a scientific basis for the quality evaluation of substance benchmarks and preparations. Eighteen batches of Xuanfu Daizhe Decoction were prepared with the decoction pieces of different batches and of the same batch were prepared respectively, and the HPLC characteristic chromatograms of these samples were established. The similarities of the chromatographic fingerprints were analyzed. With liquiritin, glycyrrhizic acid, 6-gingerol, ginsenoside Rg_1, and ginsenoside Re as index components, the high performance liquid chromatography was established for content determination with no more than 70%-130% of the mass average as the limit. The results showed that there were 19 characteristic peaks corresponding to the characteristic chromatograms of 18 batches of Xuanfu Daizhe Decoction, including 8 peaks representing liquiritin, 1,5-O-dicaffeoylqunic acid, ginsenoside Rg_1, ginsenoside Re, 1-O-acetyl britannilactone, ginsenoside Rb_1, glycyrrhizic acid, and 6-gingerol, and the fingerprint similarity was greater than 0.97. The contents of liquiritin, glycyrrhizic acid, 6-gingerol, and ginsenosides Rg_1 + Re in the prepared Xuanfu Daizhe Decoction samples were 0.53%-0.86%, 0.61%-1.2%, 0.023%-0.068%, and 0.33%-0.66%, respectively. Except for several batches, most batches of Xuanfu Daizhe Decoction showed stable contents of index components, with no discrete values. The characteristic chromatograms and index components content characterized the information of Inulae Flos, Ginseng Radix et Rhizoma, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens in Xuanfu Daizhe Decoction. This study provides a scientific basis for the further research on the key chemical properties of substance benchmark and preparations of Xuanfu Daizhe Decoction.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Benchmarking , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Ginsenosídeos/análise , Ácido Glicirrízico/análise , Controle de Qualidade
13.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2565-2571, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35718474

RESUMO

The integration of habitat processing and processing of Chinese medicinal decoction pieces(hereinafter referred to as "integration") has changed the traditional processing mode and can ensure the quality of Chinese medicinal decoction pieces from the source. This paper introduced the background of integration from the connotation and denotation of integration, relevant policies and regulations, and variety development. The present situation of integration was analyzed from the existing problems and current research progress, and the development suggestions were proposed. It is considered that although the integration is in line with the development trend of the industry with the advantages of improving the quality and standardizing the management of decoction pieces, there are still some problems, such as the lack of variety selection principles and production technical specifications, imperfect quality control stan-dards in the production process, and inadequate integration of standards and supervision. Therefore, it is suggested to determine the integrated variety selection principles and variety range as soon as possible, establish relevant technical specifications, improve quality control standards in the production process, and strengthen policy guidance and supervision to promote the healthy and orderly development of integration.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , China , Ecossistema , Controle de Qualidade
14.
Zhongguo Zhong Yao Za Zhi ; 47(2): 306-312, 2022 Jan.
Artigo em Zh | MEDLINE | ID: mdl-35178972

RESUMO

A total of 18 batches of Zhuru Decoction samples were prepared. Chromatographic fingerprints were established for Zhuru Decoction and single decoction pieces, the content of which was then determined. The extraction rate ranges, content, and transfer rate ranges of puerarin, liquiritin, and glycyrrhizic acid, together with the common peaks and the similarity range of the fingerprints, were determined to clarify key quality attributes of Zhuru Decoction. The 18 batches of Zhuru Decoction samples had 25 common peaks and the fingerprint similarity higher than 0.95. Puerariae Lobatae Radix, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens had 21, 3, and 1 characteristic peaks, respectively. The 18 batches of samples showed the extraction rates within the range of 18.45%-25.29%. Puerarin had the content of 2.20%-3.07% and the transfer rate of 38.5%-45.9%; liquiritin had the content of 0.24%-0.85% and the transfer rate of 15.9%-37.5%; glycyrrhizic acid had the content of 0.39%-1.87% and the transfer rate of 16.2%-32.8%. In this paper, the quality value transmitting of substance benchmarks of Zhuru Decoction was analyzed based on chromatographic fingerprints, extraction rate, and the content of index components. A scientific and stable method was preliminarily established, which provided a scientific basis for the quality control and formulation development of Zhuru Decoction.


Assuntos
Medicamentos de Ervas Chinesas , Controle de Qualidade , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Ácido Glicirrízico/análise , Rizoma/química
15.
Zhongguo Zhong Yao Za Zhi ; 47(2): 313-323, 2022 Jan.
Artigo em Zh | MEDLINE | ID: mdl-35178973

RESUMO

Following the preparation of substance benchmarks in Huanglian Decoction from 18 batches, the method for detecting their characteristic spectra was established to identify the similarity range and peak attribution. The content and transfer rate ranges of the index components coptisine, palmatine, berberine, liquiritin, glycyrrhizic acid, 6-gingerol, and cinnamaldehyde and the extraction amount were combined for analyzing the quality value transfer from the Chinese medicinal pieces to substance benchmarks and clarifying the key quality attributes of substance benchmarks in Huanglian Decoction. The results showed that the substance benchmarks in Huang-lian Decoction of 18 batches exhibited good similarity in characteristic spectra(all greater than 0.98). There were 17 characteristic peaks identified in the substance benchmarks of Huanglian Decoction, including 10 from Coptidis Rhizoma, 3 from Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle(processed with water), 1 from Zingiberis Rhizoma, and 3 from Cinnamomi Ramulus. The contents and average transfer rates of the index components were listed as follows: coptisine 2.20-6.46 mg·g~(-1) and 18.50%±2.93%; palmatine 3.03-8.13 mg·g~(-1) and 26.56%±4.69%; berberine 7.71-22.29 mg·g~(-1) and 17.34%±3.00%; liquiritin 0.88-2.18 mg·g~(-1) and 9.88%±4.88%; glycyrrhizic acid 1.83-4.44 mg·g~(-1) and 8.50%±3.72%; 6-gingerol 0.56-1.43 mg·g~(-1) and 11.36%±2.37%; cinnamaldehyde 1.55-3.48 mg·g~(-1) and 19.02%±4.36%. The extraction amount of the substance benchmarks from the 18 batches was controlled at 10.65%-13.88%. In this paper, the quality value transfer of substance benchmarks in Huanglian Decoction was analyzed based on the characteristic spectra, the index component contents and the extraction amount, which has provided a basis for the subsequent development of Huanglian Decoction and the quality control of its related preparations.


Assuntos
Medicamentos de Ervas Chinesas , Controle de Qualidade , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/normas
16.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5235-5245, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472030

RESUMO

This study analyzed the main chemical components of Zhuru Decoction via ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS), and then predicted the mechanism of Zhuru Decoction in clearing heat, resolving phlegm, detoxifying, and treating vomiting and alcohol-related vomiting caused by heat in stomach based on network pharmacology. The gradient elution was conducted in Agilent ZORBAX extend-C_(18) column(2.1 mm×100 mm, 1.8 µm) with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) at a flow rate of 0.3 mL·min~(-1) and the column temperature of 35 ℃. The MS adopted the positive and negative ion mode of electrospray ionization(ESI), and the data were collected in the scanning range of m/z 100-1 500. A total of 98 compounds in Zhuru Decoction were identified via BATMAN, SYMMAP, TCMSP, and relevant literature, including 36 flavonoids, 7 triterpenoids, 8 gingerols, 20 organic acids, 5 amino acids, and 22 other compounds. On the basis of the available studies, 9 components were selected as index components, and the protein-protein interaction(PPI) network of the common targets was established with STRING 11.0. Finally, 10 core targets associated with the pharmacodynamic effect were screened out. This study established the UPLC-Q-TOF-MS/MS method for identifying the chemical components in the classic prescription Zhuru Decoction, and employed network pharmacology to explore the core targets of its efficacy, which provided a refe-rence for the quality control and the research of the pharmacodynamic substances of Zhuru Decoction.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Farmacologia em Rede , Vômito
17.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3530-3538, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850806

RESUMO

Based on UPLC characteristic chromatogram and quantitative analysis of multi-components by single marker(QAMS), the content of seven types of ginsenosides in Ginseng Radix et Rhizoma was simultaneously determined, and the quality of Ginseng Radix et Rhizoma was evaluated by the principal component analysis(PCA). The chromatographic separation was performed on the Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) with the mobile phase of acetonitrile-water for gradient elution at the flow rate of 0.3 mL·min~(-1), the column temperature of 30 ℃, the detection wavelength of 203 nm, and the injection volume of 2 µL. The UPLC chromatogram was established with 19 batches of Ginseng Radix et Rhizoma samples from three producing areas by Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(version 2012). Thirteen characteristic peaks were determined and seven components were identified. SPSS 26.0 was used to conduct PCA on the characteristic peak areas. With the peak of ginsenoside Rb_1 as reference peak S, ginsenoside Rb_1 showed good durability of relative correction factor as compared with other ginsenosides. The QAMS method for the determination of seven ginsenosides in Ginseng Radix et Rhizoma was established. There was no significant difference in results between the QAMS method and the external standard method. As revealed by the results of PCA and the determination of the total content of seven ginsenosides, the four batches of Ginseng Radix et Rhizoma numbered S19, S18, S1, and S2 were of superior quality. The characteristic chromatogram and QAMS method for the determination of seven ginsenosides in this study were convenient and accurate, which greatly shortened the analysis time and improved the analysis efficiency. The findings of this study are expected to provide a basis for the overall quality evaluation of Ginseng Radix et Rhizoma.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Ginsenosídeos/análise , Panax/química , Rizoma/química , Caramujos
18.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3270-3284, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35851121

RESUMO

Coronary heart disease(CHD) is a common cardiovascular disease in clinical practice. Curcumae Rhizoma(CR), an important herbal medicine for breaking blood stasis and resolving mass, is often used for the treatment of CHD caused by blood stasis syndrome. However, the anti-CHD components, targets, and mechanism are still unclear. Therefore, in this study, the chemical components of CR were separated and identified by ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS). Based on the identified components, network pharmacology analysis, including target prediction and functional enrichment, was applied to screen out the main active components against CHD, and the potential mechanism was discussed. Finally, molecular docking was performed to verify the binding between the active components and the targets. The results showed that among the 52 chemical components identified in CR, 28 were related to CHD, involving 75 core targets. The core components included(4S)-4-hydroxy-gweicurculactone, curcumadione, and curcumenone, and the core targets included phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha(PIK3 CA), mitogen-activated protein kinase 1(MAPK1), and mitogen-activated protein kinase 3(MAPK3). In summary, through the active components, such as(4S)-4-hydroxy-gweicurculactone, curcumadione, and curcumenone, CR regulates the nerve repair, vasoconstriction, lipid metabolism, and inflammatory response, thereby exerts therapeutic effect on CHD.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Doença das Coronárias/tratamento farmacológico , Curcuma/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
19.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4854-4862, 2022 Sep.
Artigo em Zh | MEDLINE | ID: mdl-36164895

RESUMO

The processing of Chinese medicine is a unique and dialectical treatment of traditional Chinese medicine in clinic.The processing theory of "leading vinegar-processing Chinese medicine into liver" is one of the traditional processing theories of Chinese medicine.The vinegar-processing Chinese medicine under the guidance of the processing theory typically reflects the characteristics of "reducing toxicity and enhancing efficacy" of the processing of Chinese medicine.This paper traced the origin and discussed the connotation of the traditional theory of "leading vinegar-processing Chinese medicine into liver".Combined with the research status of "lea-ding vinegar-processing Chinese medicine into liver", this paper explored the mechanism of "leading vinegar-processing Chinese medicine into liver" from the aspects of material basis, medicine effect, and traditional Chinese medicine(TCM) meridian, and analyzed the existing problems in the current research.This paper reviewed the modern study on reducing toxicity and enhancing efficacy of vinegar-processing Chinese medicine, and deeply explored the scientific connotation of the traditional processing theory of "leading vinegar-processing Chinese medicine into liver".At the same time, the research trend and idea of the effect mechanism of "leading vinegar-processing Chinese medicine into liver" based on the Quality markers(Q-Marker) of TCM, biological targets, and clinical prescriptions were put forward, providing references for the further study on "leading vinegar-processing Chinese medicine into liver".This paper also provided a scientific basis for the rational selection of processed products in TCM clinical practice.


Assuntos
Medicamentos de Ervas Chinesas , Meridianos , Ácido Acético , Biomarcadores , Fígado , Medicina Tradicional Chinesa
20.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6391-6398, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604884

RESUMO

This study employed orthogonal design and AHP-comprehensive scoring method to optimize the processing technology of wine-processed Polygonati Rhizoma, and then explored the immunomodulation performance of the product. Orthogonal test was established based on single factor test results to study the effects of soaking time, steaming time, and drying temperature on the quality of wine-processed Polygonati Rhizoma. Further, the analytic hierarchy process(AHP) and comprehensive scoring method were employed to determine the optimum processing parameters. The immunosuppression model of mice was established by injecting cyclophosphamide intraperitoneally. The body weight, immune organ index, and white blood cell count(WBC) and red blood cell count(RBC) in peripheral blood were compared between the mice administrated with the non-processed Polygonati Rhizoma and the wine-processed Polygonati Rhizoma prepared with modern and traditional methods. Further, the levels of interleukin-2(IL-2) and interferon-gamma(IFN-γ) in serum were determined by enzyme-linked immunosorbent assay(ELISA) for comparison. The processing parameters were optimized as follows: soaking in Chinese rice wine for 10 h, steaming for 20 h, and drying thick slices at 60 ℃. The wine-processed Polygonati Rhizoma prepared with both modern and traditional methods can significantly enhance the immune function, with similar performance. The optimized processing technology of wine-processed Polygonati Rhizoma is stable and feasible and the product prepared with this process has obvious immune-enhancing effect, which provides a basis for the quality standard formulation and the modern research of wine-processed Polygonati Rhizoma.


Assuntos
Medicamentos de Ervas Chinesas , Vinho , Camundongos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Projetos de Pesquisa , Rizoma , Tecnologia , Imunomodulação , Vapor , Interferon gama , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA