Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Yao Xue Xue Bao ; 49(12): 1639-43, 2014 Dec.
Artigo em Zh | MEDLINE | ID: mdl-25920191

RESUMO

Cell-penetrating peptide (CPP) is a kind of small molecular peptide which can pass through a variety of cell membranes. It can carry bioactive macromolecules into cells. Due to lacking of tissue-selecting and targeting behavior, the application of CPP in the field of tumor treatment is limited. Activatable cell- penetrating peptide (ACPP) has brought the dawn to the application of CPP. This review mainly introduces the applications of ACPP in the targeting antitumor drug delivery which was designed based on the differences between tumor microenvironment and normal tissues as well as the exogenous physical stimulation.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Humanos , Microambiente Tumoral
2.
Yao Xue Xue Bao ; 49(4): 543-9, 2014 Apr.
Artigo em Zh | MEDLINE | ID: mdl-24974475

RESUMO

The purpose of this study is to explore the feasibility of wheat germ agglutinin (WGA) modified liposome as a vehicle for ophthalmic administration. Liposome loaded with 5-carboxyfluorescein (FAM) was prepared by lipid film hydration method. WGA was thiolated and then conjugated to the surface of the liposome via polyethylene glycol linker to constitute the WGA-modified and FAM-loaded liposome (WGA-LS/FAM). The amount of thiol groups on each WGA molecule was determined, and the bioactivity of WGA was estimated after it was modified to the surface of liposome. The physical and chemical features of the WGA-modified liposome were characterized and the ocular bioadhesive performance was evaluated in rats. The result showed that each thiolated WGA molecule was conjugated with 1.32 thiol groups. WGA-LS/FAM had a mean size of (97.40 +/- 1.39) nm, with a polydispersity index of 0.23 +/- 0.01. The entrapment efficacy of FAM was about (2.95 +/- 0.21)%, and only 4% of FAM leaked out of the liposome in 24 h. Erythrocyte agglutination test indicated that after modification WGA preserved the binding activity to glycoprotein. The in vivo ocular elimination of WGA-LS/FAM fitted first-order kinetics, and the elimination rate was significantly slower than that of the unmodified liposome, demonstrating WGA-modified liposome is bioadhesive and suitable for ophthalmic administration.


Assuntos
Absorção Fisico-Química , Olho/metabolismo , Lipossomos/farmacocinética , Aglutininas do Germe de Trigo/farmacocinética , Adesividade , Administração Oftálmica , Animais , Portadores de Fármacos , Fluoresceínas/química , Lipossomos/administração & dosagem , Lipossomos/química , Masculino , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Aglutininas do Germe de Trigo/administração & dosagem , Aglutininas do Germe de Trigo/química
3.
J Biol Chem ; 287(12): 8944-53, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22270360

RESUMO

Human myeloid α-defensins called HNPs play multiple roles in innate host defense. The Trp-26 residue of HNP1 was previously shown to contribute importantly to its ability to kill S. aureus, inhibit anthrax lethal factor (LF), bind gp120 of HIV-1, dimerize, and undergo further self-association. To gain additional insights into the functional significance of dimerization, we compared wild type HNP1 to dimerization-impaired, N-methylated HNP1 monomers and to disulfide-tethered obligate HNP1 dimers. The structural effects of these modifications were confirmed by x-ray crystallographic analyses. Like the previously studied W26A mutation, N-methylation of Ile-20 dramatically reduced the ability of HNP1 to kill Staphylococcus aureus, inhibit LF, and bind gp120. Importantly, this modification had minimal effect on the ability of HNP1 to kill Escherichia coli. The W26A and MeIle-20 mutations impaired defensin activity synergistically. N-terminal covalent tethering rescued the ability of W26A-HNP1 to inhibit LF but failed to restore its defective killing of S. aureus. Surface plasmon resonance studies revealed that Trp-26 mediated the association of monomers and canonical dimers of HNP1 to immobilized HNP1, LF, and gp120, and also indicated a possible mode of tetramerization of HNP1 mediated by Ile-20 and Leu-25. This study demonstrates that dimerization contributes to some but not all of the many and varied activities of HNP1.


Assuntos
alfa-Defensinas/química , alfa-Defensinas/imunologia , Cristalografia por Raios X , Dimerização , Escherichia coli/fisiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Humanos , Imunidade Inata , Conformação Molecular , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , alfa-Defensinas/genética
4.
Bioorg Med Chem ; 21(12): 3443-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23673222

RESUMO

The dengue capsid protein C is a highly basic alpha-helical protein of ~100 amino acid residues that forms an emphipathic homodimer to encapsidate the viral genome and to interact with viral membranes. The solution structure of dengue 2 capsid protein C (DEN2C) has been determined by NMR spectroscopy, revealing a large dimer interface formed almost exclusively by hydrophobic residues. The only acidic residue (Glu87) conserved in the capsid proteins of all four serotypes of dengue virus forms a salt bridge with the side chains of Lys45 and Arg55'. To understand the structural and functional significance of this conserved salt bridge, we chemically synthesized an N-terminally truncated form of DEN2C ((WT)DEN2C) and its salt bridge-void analog (E87A)DEN2C using the native chemical ligation technique developed by Kent and colleagues. Comparative biochemical and biophysical studies of these two synthetic proteins using circular dichroism spectroscopy, fluorescence polarization, protein thermal denaturation, and proteolytic susceptibility assay demonstrated that the conserved salt bridge contributed to DEN2C dimerization and stability as well as its resistance to proteolytic degradation. Our work provided insight into the role of a fully conserved structural element of the dengue capsid protein C and paved the way for additional functional studies of this important viral protein.


Assuntos
Proteínas do Capsídeo/síntese química , Vírus da Dengue/química , Sais/química , Proteínas do Capsídeo/química , Dimerização , Polarização de Fluorescência , Modelos Moleculares , Dobramento de Proteína
5.
Bioorg Med Chem ; 21(14): 4045-50, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23660015

RESUMO

Peptide retro-inverso isomerization is thought to be functionally neutral and has been widely used as a tool for designing proteolytically stable d-isomers to recapitulate biological activities of their parent l-peptides. Despite success in a wide range of applications, exceptions amply exist that clearly defy this rule of thumb when parent l-peptides adopt an α-helical conformation in their bound state. The detrimental energetic effect of retro-inverso isomerization of an α-helical l-peptide on its target protein binding has been estimated to be 3.0-3.4kcal/mol. To better understand how the retro-inverso isomer of a structured protein works at the molecular level, we chemically synthesized and functionally characterized the retro-inverso isomer of a rationally designed miniature protein termed stingin of 18 amino acid residues, which adopts an N-terminal loop and a C-terminal α-helix stabilized by two intra-molecular disulfide bridges. Stingin emulated the transactivation peptide of the p53 tumor suppressor protein and bound with high affinity and via its C-terminal α-helix to MDM2 and MDMX-the two negative regulators of p53. We also prepared the retro isomer and d-enantiomer of stingin for comparative functional studies using fluorescence polarization and surface plasmon resonance techniques. We found that retro-inverso isomerization of l-stingin weakened its MDM2 binding by 720 fold (3.9kcal/mol); while enantiomerization of l-stingin drastically reduced its binding to MDM2 by three orders of magnitude, sequence reversal completely abolished it. Our findings demonstrate the limitation of peptide retro-inverso isomerization in molecular mimicry and reinforce the notion that the strategy works poorly with biologically active α-helical peptides due to inherent differences at the secondary and tertiary structural levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structural level.(1.)


Assuntos
Peptídeos/química , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Dicroísmo Circular , Humanos , Isomerismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(32): 14321-6, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660730

RESUMO

The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53, conferring tumor development and survival. Antagonists targeting the p53-binding domains of MDM2 and MDMX kill tumor cells both in vitro and in vivo by reactivating the p53 pathway, promising a class of antitumor agents for cancer therapy. Aided by native chemical ligation and mirror image phage display, we recently identified a D-peptide inhibitor of the p53-MDM2 interaction termed (D)PMI-alpha (TNWYANLEKLLR) that competes with p53 for MDM2 binding at an affinity of 219 nM. Increased selection stringency resulted in a distinct D-peptide inhibitor termed (D)PMI-gamma (DWWPLAFEALLR) that binds MDM2 at an affinity of 53 nM. Structural studies coupled with mutational analysis verified the mode of action of these D-peptides as MDM2-dependent p53 activators. Despite being resistant to proteolysis, both (D)PMI-alpha and (D)PMI-gamma failed to actively traverse the cell membrane and, when conjugated to a cationic cell-penetrating peptide, were indiscriminately cytotoxic independently of p53 status. When encapsulated in liposomes decorated with an integrin-targeting cyclic-RGD peptide, however, (D)PMI-alpha exerted potent p53-dependent growth inhibitory activity against human glioblastoma in cell cultures and nude mouse xenograft models. Our findings validate D-peptide antagonists of MDM2 as a class of p53 activators for targeted molecular therapy of malignant neoplasms harboring WT p53 and elevated levels of MDM2.


Assuntos
Glioblastoma/tratamento farmacológico , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Lipossomos , Camundongos , Camundongos Nus , Oligopeptídeos , Peptídeos/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Transplante Heterólogo
9.
Yao Xue Xue Bao ; 47(4): 512-6, 2012 Apr.
Artigo em Zh | MEDLINE | ID: mdl-22799036

RESUMO

The purpose of this study is to investigate the feasibility of poly(arginine)8 (R8) modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a carrier for the oral delivery of insulin. Insulin-loaded PLGA nanoparticle (INS-NP) was prepared by a double emulsion-solvent evaporation method, and R8 was subsequently conjugated to the surface of the INS-NP via polyethylene glycol bridge (R8-INS-NP). The physical and chemical features of the nanoparticles were characterized, and insulin release was determined in vitro. The pharmacokinetics and pharmacodynamics were evaluated by in situ absorption study with the intestinal loop of rats. The blood glucose level was determined by glucose oxidize method and the serum insulin concentration was determined by radioimmunoassay (RIA). The mean diameter of INS-NP was (179.0 +/- 5.2) nm and the polydispersity index was 0.152 +/- 0.042, while the entrapment efficiency was (29.10 +/- 2.59) %. The in vitro release behavior of insulin showed an initial burst effect followed by a stage of slow release. After administrating 10 U x kg(-1) insulin to rats, R8-INS-NPs decreased the plasma glucose level much lower than INS-NPs, meanwhile, D-form R8 substantially enhanced intestinal absorption of insulin much more than L-form R8. Compared to subcutaneous injection, the relative bioavailabilities of insulin were 0.52%, 4.78%, 8.39%, and the pharmacological bioavailabilities were 2.07%, 3.90%, 8.24%, separately. The R8-modified nanoparticles promoted the intestinal absorption of insulin, which might be a potential approach for oral delivery of peptide, protein and even other hydrophilic macromolecules in the future.


Assuntos
Sistemas de Liberação de Medicamentos , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Absorção Intestinal , Peptídeos/química , Administração Oral , Animais , Disponibilidade Biológica , Glicemia/metabolismo , Portadores de Fármacos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/sangue , Hipoglicemiantes/química , Insulina/administração & dosagem , Insulina/sangue , Insulina/química , Ácido Láctico/química , Masculino , Nanopartículas , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley
10.
J Biol Chem ; 285(25): 19572-81, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20382735

RESUMO

A retro-inverso peptide is made up of d-amino acids in a reversed sequence and, when extended, assumes a side chain topology similar to that of its parent molecule but with inverted amide peptide bonds. Despite their limited success as antigenic mimicry, retro-inverso isomers generally fail to emulate the protein-binding activities of their parent peptides of an alpha-helical nature. In studying the interaction between the tumor suppressor protein p53 and its negative regulator MDM2, Sakurai et al. (Sakurai, K., Chung, H. S., and Kahne, D. (2004) J. Am. Chem. Soc. 126, 16288-16289) made a surprising finding that the retro-inverso isomer of p53(15-29) retained the same binding activity as the wild type peptide as determined by inhibition enzyme-linked immunosorbent assay. The authors attributed the unusual outcome to the ability of the D-peptide to adopt a right-handed helical conformation upon MDM2 binding. Using a battery of biochemical and biophysical tools, we found that retro-inverso isomerization diminished p53 (15-29) binding to MDM2 or MDMX by 3.2-3.3 kcal/mol. Similar results were replicated with the C-terminal domain of HIV-1 capsid protein (3.0 kcal/mol) and the Src homology 3 domain of Abl tyrosine kinase (3.4 kcal/mol). CD and NMR spectroscopic as well as x-ray crystallographic studies showed that D-peptide ligands of MDM2 invariably adopted left-handed helical conformations in both free and bound states. Our findings reinforce that the retro-inverso strategy works poorly in molecular mimicry of biologically active helical peptides, due to inherent differences at the secondary and tertiary structure levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structure level.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos/química , Capsídeo/química , Proteínas de Ciclo Celular , Cristalografia por Raios X/métodos , HIV-1/metabolismo , Humanos , Modelos Moleculares , Mimetismo Molecular/efeitos dos fármacos , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química
11.
J Biol Chem ; 285(21): 16275-85, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20220136

RESUMO

We performed a comprehensive alanine scan of human alpha-defensin HNP1 and tested the ability of the resulting analogs to kill Staphylococcus aureus, inhibit anthrax lethal factor, and bind human immunodeficiency virus-1 gp120. By far, the most deleterious mutation for all of these functions was W26A. The activities lost by W26A-HNP1 were restored progressively by replacing W26 with non-coded, straight-chain aliphatic amino acids of increasing chain length. The hydrophobicity of residue 26 also correlated with the ability of the analogs to bind immobilized wild type HNP1 and to undergo further self-association. Thus, the hydrophobicity of residue 26 is not only a key determinant of the direct interactions of HNP1 with target molecules, but it also governs the ability of this peptide to form dimers and more complex quaternary structures at micromolar concentrations. Although all defensin peptides are cationic, their amphipathicity is at least as important as their positive charge in enabling them to participate in innate host defense.


Assuntos
Multimerização Proteica , alfa-Defensinas/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade Inata/fisiologia , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Triptofano/química , Triptofano/genética , Triptofano/imunologia , Triptofano/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/imunologia , alfa-Defensinas/metabolismo
12.
J Biol Chem ; 284(42): 29180-92, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19640840

RESUMO

Despite the small size and conserved tertiary structure of defensins, little is known at a molecular level about the basis of their functional versatility. For insight into the mechanism(s) of defensin function, we prepared enantiomeric pairs of four human defensins, HNP1, HNP4, HD5, and HBD2, and studied their killing of bacteria, inhibition of anthrax lethal factor, and binding to HIV-1 gp120. Unstructured HNP1, HD5, and HBD3 and several other human alpha- and beta-defensins were also examined. Crystallographic analysis showed a plane of symmetry that related (L)HNP1 and (D)HNP1 to each other. Either d-enantiomerization or linearization significantly impaired the ability of HNP1 and HD5 to kill Staphylococcus aureus but not Escherichia coli. In contrast, (L)HNP4 and (D)HNP4 were equally bactericidal against both bacteria. d-Enantiomers were generally weaker inhibitors or binders of lethal factor and gp120 than their respective native, all-l forms, although activity differences were modest, particularly for HNP4. A strong correlation existed among these different functions. Our data indicate: (a) that HNP1 and HD5 kill E. coli by a process that is mechanistically distinct from their actions that kill S. aureus and (b) that chiral molecular recognition is not a stringent prerequisite for other functions of these defensins, including their ability to inhibit lethal factor and bind gp120 of HIV-1.


Assuntos
alfa-Defensinas/química , Alanina/química , Aminobutiratos/química , Animais , Antígenos de Bactérias/química , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/química , Cristalografia por Raios X/métodos , Cisteína/química , Escherichia coli/metabolismo , Humanos , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo , Estereoisomerismo , Ressonância de Plasmônio de Superfície
13.
Pharm Res ; 27(11): 2466-77, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20721604

RESUMO

PURPOSE: To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. METHODS: Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. RESULTS: The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. CONCLUSIONS: A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.


Assuntos
Nanofibras , Preparações Farmacêuticas/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Solubilidade , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
14.
Acta Pharmacol Sin ; 30(9): 1337-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730429

RESUMO

AIM: To optimize formulation methods for loading gemcitabine (GEM), the main drug against pancreatic cancer, into albumin nanoparticles for extended blood circulation and improved efficacy. METHODS: GEM was loaded into two sizes of disolvation-crosslinked bovine serum albumin nanoparticles, with a mean diameter of 109.7 nm and 405.6 nm, respectively, by co-precipitation (the direct method) and follow-up adsorption (the indirect method). The antitumor activities of the two nanoparticulate formulations, were evaluated according to their anti-proliferative effects on the human pancreatic cell line BXPC-3, which were assessed using the MTT assay. RESULTS: The two nanoparticulate formulations, created by direct co-precipitation and indirect adsorption, possessed smooth surfaces and high drug loading efficiencies, 83% and 93% at 11% and 13% drug loading, respectively. The two formulations released GEM for 8 and 12 h, respectively, and significantly improved anti-BXPC-3 proliferation effects, as compared with the GEM solution and the drug-free albumin particles. CONCLUSION: Co-precipitating and adsorbing GEM into albumin particles resulted in sustained-release nanoparticulate formulations with improved antitumor cytotoxicity. The result suggests that this is a useful formulation strategy for improving the antitumor efficacy of GEM.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Portadores de Fármacos/uso terapêutico , Nanocápsulas/uso terapêutico , Nanosferas/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Humanos , Soroalbumina Bovina/metabolismo , Células Tumorais Cultivadas , Gencitabina
15.
Int J Pharm ; 556: 217-225, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30557679

RESUMO

Nanocrystals has been constructed for insoluble drugs as a novel type of nanoscale drug delivery systems with high drug loading. How to prepare nanocrystals with good stability and tumor targeting capability is still challenging. This study was to modify paclitaxel nanocrystals with polyethylene glycol (PEG) for stabilization and RGD peptide for tumor targeting. Inspired by the structure of mussel's foot protein, polydopamine (PDA) was introduced to the drug delivery system for the modification of nanocrystals. Briefly, PDA was coated on the surface of nanocrystals to form a reaction platform for further PEGylation and RGD peptide conjugation. PEGylated nanocrystals with RGD peptide modification (NC@PDA-PEG-RGD) were prepared with near-spheroid shape, drug loading 45.12 ±â€¯1.81% and a hydrodynamic diameter 419.9 ±â€¯80.9 nm. The size of NC@PDA-PEG-RGD remained basically unchanged for at least 72 h in the presence of plasma while the size of unmodified nanocrystals (NC) increased and exceeded 1000 nm in 12 h. Cellular uptake and cellular growth inhibition experiments using the lung cancer cell line A549 demonstrated the superiority of NC@PDA-PEG-RGD over NC or PEGylated nanocrystals without RGD modification (NC@PDA-PEG). In A549 model tumor bearing-mice, NC@PDA-PEG-RGD showed significantly higher intratumor accumulation and slower tumor growth than NC@PDA-PEG or free paclitaxel. In summary, our study suggested the superiority of RGDmodified PEGylated paclitaxel nanocrystals as a lung cancer-targeted delivery system and the potential of PDA coating technique for targeting functionalization of nanocrystals.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Oligopeptídeos/química , Paclitaxel/administração & dosagem , Polietilenoglicóis/química , Células A549 , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Humanos , Hidrodinâmica , Indóis/química , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas , Oligopeptídeos/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacologia , Tamanho da Partícula , Polímeros/química , Fatores de Tempo
16.
Pharmaceutics ; 11(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621141

RESUMO

The present study was carried out to investigate the potential of cationic functionalization on imatinib nanocrystals to improve the mucoadhesiveness and, thus, delivery to the lesion of cervicovaginal tumors. Amino-group-functionalized imatinib nanocrystals (NC@PDA-NH2) were prepared with near-spheroid shape, nanoscale size distribution, positive zeta potential, and relatively high drug content with the aid of the polydopamine-coating technique. Efficient interaction between NC@PDA-NH2 and mucin was proven by mucin adsorption which was related to the positive zeta-potential value of NC@PDA-NH2 and the change in the size distribution on mixing of NC@PDA-NH2 and mucin. Cellular uptake, growth inhibition, and apoptosis induction in cervicovaginal cancer-related cells demonstrated the superiority of NC@PDA-NH2 over unmodified nanocrystals. For practical intravaginal administration, NC@PDA-NH2 was dispersed in Pluronic F127-based thermosensitive in situ hydrogel, which showed suitable gelation temperature and sustained-release profiles. In comparison with unmodified nanocrystals, NC@PDA-NH2 exhibited extended residence on ex vivo murine vaginal mucosa, prolonged in vivo intravaginal residence, and enhanced inhibition on the growth of murine orthotopic cervicovaginal model tumors indicated by smaller tumor size, longer median survival time, and more intratumor apoptosis with negligible mucosal toxicity. In conclusion, cationic functionalization endowed NC@PDA-NH2 significant mucoadhesiveness and, thus, good potential against cervicovaginal cancer via intravaginal administration.

17.
J Am Chem Soc ; 130(41): 13546-8, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18798622

RESUMO

The oncoproteins MDM2 and MDMX negatively regulate the activity and stability of the tumor suppressor protein p53 and are important molecular targets for anticancer therapy. Grafting four residues of p53 critical for MDM2/MDMX binding to the N-terminal alpha-helix of BmBKTx1, a scorpion toxin isolated from the venom of the Asian scorpion Buthus martensi Karsch, converts the miniature protein into an effective inhibitor of p53 interactions with MDM2 and MDMX. Additional mutations enable the 27-residue miniprotein inhibitor to traverse the cell membrane and selectively kill tumor cells in a p53 dependent manner.


Assuntos
Antineoplásicos/química , Venenos de Escorpião/química , Escorpiões/química , Sequência de Aminoácidos , Animais , Modelos Moleculares , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
18.
J Mol Biol ; 368(2): 537-49, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17355880

RESUMO

Human neutrophil alpha-defensins (HNPs) are synthesized in vivo as inactive precursor proteins, i.e. preproHNPs. A series of sequential proteolytic events excise the N-terminal inhibitory pro peptide, leading to defensin maturation and storage in azurophilic granules. The anionic pro peptide, required for correct sub-cellular trafficking and sorting of proHNPs, inhibits the antimicrobial activity of cationic defensins, either inter or intra-molecularly, presumably through charge neutralization. To better understand the role of the pro peptide in the folding and functioning of alpha-defensins and/or pro alpha-defensins, we chemically attached the proHNP1 pro peptide or (wt)pro peptide and the following artificial pro segments to the N terminus of HNP1: polyethylene glycol (PEG), Arg(10) (polyR), Ser(10) (polyS), and (cr)pro peptide, a charge-reversing mutant of the pro peptide where Arg/Lys residues were changed to Asp, and Asp/Glu residues to Lys. Comparative in vitro folding suggested that while all artificial pro segments chaperoned defensin folding, with PEG being the most efficient, the pro peptide catalyzed the folding of proHNPs likely through two independent mechanisms: solubilization of and interaction with the C-terminal defensin domain. Further, the N-terminal artificial pro segments dramatically altered the bactericidal activity of HNP1 against both Escherichia coli and Staphylococcus aureus. Surprisingly, (cr)pro peptide and (wt)pro peptide showed similar properties with respect to intra-molecular and inter-molecular catalysis of defensin folding as well as alpha-defensin binding, although their binding modes appeared different. Our findings identify a dual chaperone activity of the pro peptide and may shed light on the molecular mechanisms by which pro alpha-defensins fold in vivo.


Assuntos
Neutrófilos/metabolismo , Dobramento de Proteína , Precursores de Proteínas/metabolismo , alfa-Defensinas/química , alfa-Defensinas/metabolismo , Antibacterianos/farmacologia , Catálise/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Humanos , Membranas Artificiais , Viabilidade Microbiana/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/metabolismo , Neutrófilos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Serina/metabolismo , Solubilidade/efeitos dos fármacos , Espectrometria de Fluorescência , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Fatores de Tempo
19.
Br J Clin Pharmacol ; 65(6): 893-907, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18279479

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: Mycophenolic acid (MPA) undergoes enterohepatic circulation (EHC) in the body and several population models have been proposed to describe this process using sparse data. Recent studies in Whites have found that polymorphism in UGT1A9 could partly explain the large interindividual variability associated with the pharmacokinetics of MPA. WHAT THIS STUDY ADDS: A new population pharmacokinetic model for EHC combining MPA and its main glucuronide metabolite (MPAG) simultaneously was established based on physiological aspects of biliary excretion using intensive sampling data. Pharmacokinetic profiles of MPA and MPAG with the UGT1A9 polymorphism in healthy Chinese were characterized. AIMS To establish a population pharmacokinetic model that describes enterohepatic circulation (EHC) of mycophenolic acid (MPA) based on physiological considerations and to investigate the influence of polymorphisms of UGT1A9 on the pharmacokinetics of MPA. METHODS: Pharmacokinetic data were obtained from two comparative bioavailability studies of oral mycophenolic mofetil formulations. Nonlinear mixed effects modelling was employed to develop an EHC model including both MPA and its main glucuronide metabolite (MPAG) simultaneously. Demographic characteristics and UGT1A9 polymorphisms were screened as covariates. RESULTS: In total, 590 MPA and 589 MPAG concentration-time points from 42 healthy male volunteers were employed in this study. The chain compartment model included an intestinal compartment, a gallbladder compartment, a central and a peripheral compartment for MPA and a central compartment for MPAG. The typical population clearance (CL/F) estimates with its relative standard error for MPA and MPAG were 10.2 l h(-1) (5.7%) and 1.38 l h(-1) (6.9%), respectively. The amount of MPA recycled in the body was estimated to be 29.1% of the total amount absorbed. Covariate analysis showed that body weight was positively correlated with CL/F of MPA, intercompartment CL/F of MPA and distribution volume of MPA peripheral compartment. Polymorphisms of UGT1A9 did not show any effect on the pharmacokinetics of MPA and MPAG. The model evaluation tests indicated that the proposed model can describe the pharmacokinetic profiles of MPA and MPAG in healthy Chinese subjects. CONCLUSIONS: The proposed model may provide a valuable approach for planning future pharmacokinetic-pharmacodynamic studies and for designing proper dosage regimens of MPA.


Assuntos
Antibióticos Antineoplásicos/farmacocinética , Circulação Êntero-Hepática/efeitos dos fármacos , Glucuronosiltransferase/genética , Modelos Biológicos , Ácido Micofenólico/farmacocinética , Adulto , Povo Asiático/genética , Circulação Êntero-Hepática/genética , Humanos , Masculino , Polimorfismo Genético/genética , Estatística como Assunto , UDP-Glucuronosiltransferase 1A
20.
Int J Pharm ; 338(1-2): 125-32, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17336005

RESUMO

Protein aggregation upon exposing to the water/organic solvent interface is one of the most significant obstacles in developing poly(lactic-co-glycolic acid) (PLGA) microspheres with double emulsion process. The aim of present study is to devise a formulation strategy to prevent recombinant human growth hormone (rhGH) from aggregation during microencapsulation. The excipients used for stabilizing rhGH were selected from sugars, nonionic surfactants, polyol, and protein. Among the candidates, surfactants exhibited potentialities in protecting rhGH against emulsification-induced aggregation. It was also found that Pluronic F127 showed an outstanding as well as concentration-dependent stabilizing effect on rhGH, which was different to Pluronic F68 and Tween 20. After the rhGH solution comprising F127 and sucrose was emulsified with methylene chloride, the recovery of monomeric protein achieved 99.0%, principally attributed to the presence of F127. This solution was subsequently encapsulated as inner aqueous phase in the PLGA microspheres by a conventional double emulsion process, with the encapsulation efficiency higher than 98%. Improvement in the release of rhGH was observed for the microspheres co-encapsulating Pluronic F127 regardless in the presence or absence of sucrose, compared to the microspheres containing rhGH alone. The result further implied that co-encapsulation of Pluronic F127 in the microspheres played an important role in the stabilization of rhGH.


Assuntos
Hormônio do Crescimento Humano/administração & dosagem , Poloxâmero/administração & dosagem , Tensoativos/administração & dosagem , Estabilidade de Medicamentos , Emulsões , Excipientes/administração & dosagem , Hormônio do Crescimento Humano/química , Ácido Láctico/administração & dosagem , Microesferas , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA