Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nature ; 595(7868): 542-548, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290429

RESUMO

Rigid molecular sieving materials work well for small molecules with the complete exclusion of large ones1-3, and molecules with matching physiochemical properties may be separated using dynamic molecular sieving materials4-6. Metal-organic frameworks (MOFs)7-9 are known for their precise control of structures and functions on a molecular level10-15. However, the rational design of local flexibility in the MOF framework for dynamic molecular sieving remains difficult and challenging. Here we report a MOF material (JNU-3a) featuring one-dimension channels with embedded molecular pockets opening to propylene (C3H6) and propane (C3H8) at substantially different pressures. The dynamic nature of the pockets is revealed by single-crystal-to-single-crystal transformation upon exposure of JNU-3a to an atmosphere of C3H6 or C3H8. Breakthrough experiments demonstrate that JNU-3a can realize high-purity C3H6 (≥99.5%) in a single adsorption-desorption cycle from an equimolar C3H6/C3H8 mixture over a broad range of flow rates, with a maximum C3H6 productivity of 53.5 litres per kilogram. The underlying separation mechanism-orthogonal-array dynamic molecular sieving-enables both large separation capacity and fast adsorption-desorption kinetics. This work presents a next-generation sieving material design that has potential for applications in adsorptive separation.

2.
J Am Chem Soc ; 146(10): 6955-6961, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422479

RESUMO

Machine learning is gaining momentum in the prediction and discovery of materials for specific applications. Given the abundance of metal-organic frameworks (MOFs), computational screening of the existing MOFs for propane/propylene (C3H8/C3H6) separation could be equally important for developing new MOFs. Herein, we report a machine learning-assisted strategy for screening C3H8-selective MOFs from the CoRE MOF database. Among the four algorithms applied in machine learning, the random forest (RF) algorithm displays the highest degree of accuracy. We experimentally verified the identified top-performing MOF (JNU-90) with its benchmark selectivity and separation performance of directly producing C3H6. Considering its excellent hydrolytic stability, JNU-90 shows great promise in the energy-efficient separation of C3H8/C3H6. This work may accelerate the development of MOFs for challenging separations.

3.
Inorg Chem ; 63(6): 3075-3082, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38295520

RESUMO

Herein, an unprecedented cadmium-based metal-organic framework (JNU-106) fabricated by utilizing pyrazole-functionalized tetraphenylethylene ligands (Py-TPE) and rod-shaped secondary building units is reported, possessing a new (3,3,3,6,6,8)-connected topological network. Thanks to the ingeniously designed intramolecular charge transfer behavior, which originates from the congruent coplanarity between Py and TPE, JNU-106 exhibits intense green luminescence with a quantum yield increased by 1.5 times. The phenomenon of remarkable fluorescence quenching of JNU-106 reveals that it possesses extremely high anti-interference performance, superior sensitivity, and dedicated selectivity toward tetracycline antibiotics (TCAs) in aqueous solutions, which are comparable to those of the state-of-the-art porous sensing compounds. Taking the theoretical calculations and experimental results into account, the luminescence quenching is mainly attributed to the internal filtration effect and the static quenching effect. Considering the portable and rapid performance of JNU-106-based testing strips for sensing TCAs, the fabricated JNU-106 provides an alternative for ecological monitoring and environmental governance.

4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33441484

RESUMO

Humans express seven heparan sulfate (HS) 3-O-sulfotransferases that differ in substrate specificity and tissue expression. Although genetic studies have indicated that 3-O-sulfated HS modulates many biological processes, ligand requirements for proteins engaging with HS modified by 3-O-sulfate (3-OS) have been difficult to determine. In particular, the context in which the 3-OS group needs to be presented for binding is largely unknown. We describe herein a modular synthetic approach that can provide structurally diverse HS oligosaccharides with and without 3-OS. The methodology was employed to prepare 27 hexasaccharides that were printed as a glycan microarray to examine ligand requirements of a wide range of HS-binding proteins. The binding selectivity of antithrombin-III (AT-III) compared well with anti-Factor Xa activity supporting robustness of the array technology. Many of the other examined HS-binding proteins required an IdoA2S-GlcNS3S6S sequon for binding but exhibited variable dependence for the 2-OS and 6-OS moieties, and a GlcA or IdoA2S residue neighboring the central GlcNS3S. The HS oligosaccharides were also examined as inhibitors of cell entry by herpes simplex virus type 1, which, surprisingly, showed a lack of dependence of 3-OS, indicating that, instead of glycoprotein D (gD), they competitively bind to gB and gC. The compounds were also used to examine substrate specificities of heparin lyases, which are enzymes used for depolymerization of HS/heparin for sequence determination and production of therapeutic heparins. It was found that cleavage by lyase II is influenced by 3-OS, while digestion by lyase I is only affected by 2-OS. Lyase III exhibited sensitivity to both 3-OS and 2-OS.


Assuntos
Células Epiteliais/metabolismo , Heparina Liase/metabolismo , Heparitina Sulfato/metabolismo , Herpesvirus Humano 1/metabolismo , Sulfatos/metabolismo , Sulfotransferases/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Antitrombina III/química , Antitrombina III/genética , Antitrombina III/metabolismo , Sítios de Ligação , Ligação Competitiva , Sequência de Carboidratos , Linhagem Celular , Córnea/citologia , Córnea/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Fator Xa/química , Fator Xa/genética , Fator Xa/metabolismo , Inibidores do Fator Xa/química , Inibidores do Fator Xa/metabolismo , Expressão Gênica , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Heparina Liase/química , Heparina Liase/genética , Heparitina Sulfato/química , Herpesvirus Humano 1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Análise em Microsséries , Ligação Proteica , Proteólise , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato , Sulfatos/química , Sulfotransferases/química , Sulfotransferases/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
5.
Angew Chem Int Ed Engl ; 63(27): e202403209, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647582

RESUMO

Metal-organic frameworks (MOFs) that exhibit dynamic phase-transition behavior under external stimuli could have great potential in adsorptive separations. Here we report on a zinc-based microporous MOF (JNU-80) and its reversible transformation between two crystalline phases: large pore (JNU-80-LP) and narrow pore (JNU-80-NP). Specifically, JNU-80-LP can undergo a dehydration-induced cluster consolidation under heat treatment, resulting in JNU-80-NP with a reduced channel that allows exclusion of di-branched hexane isomers while high adsorption of linear and mono-branched hexane isomers. We further demonstrate the fabrication of MOF-polymer composite (JNU-80-NP-block) and its application in the purification of di-branched isomers from liquid-phase hexane mixtures (98 % di-branched) at room temperature, affording the di-branched hexane isomers with 99.5 % purity and close to 90 % recovery rate over ten cycles. This work illustrates an interesting dehydration-induced cluster consolidation in MOF structure and the ensuing channel shrinkage for sieving di-branched hexane isomers, which may have important implications for the development of MOFs with dynamic behavior and their potential applications in non-thermal driven separation technologies.

6.
J Am Chem Soc ; 145(34): 18931-18938, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590883

RESUMO

Interfacial charge transfer on the surface of heterogeneous photocatalysts dictates the efficiency of reactive oxygen species (ROS) generation and therefore the efficiency of aerobic oxidation reactions. Reticular chemistry in metal-organic frameworks (MOFs) allows for the rational design of donor-acceptor pairs to optimize interfacial charge-transfer kinetics. Herein, we report a series of isostructural fcu-topology Ni8-MOFs (termed JNU-212, JNU-213, JNU-214, and JNU-215) with linearly bridged bipyrazoles as organic linkers. These crystalline Ni8-MOFs can maintain their structural integrity in 7 M NaOH at 100 °C for 24 h. Experimental studies reveal that linker engineering by tuning the electron-accepting capacity of the pyrazole-bridging units renders these Ni8-MOFs with significantly improved charge separation and transfer efficiency under visible-light irradiation. Among them, the one containing a benzoselenadiazole unit (JNU-214) exhibits the best photocatalytic performance in the aerobic oxidation of benzylamines with a conversion rate of 99% in 24 h. Recycling experiments were carried out to confirm the stability and reusability of JNU-214 as a robust heterogeneous catalyst. Significantly, the systematic modulation of the electron-accepting capacity of the bridging units in donor-acceptor-donor MOFs provides a new pathway to develop viable noble-metal-free heterogeneous photocatalysts for aerobic oxidation reactions.

7.
Small ; 19(25): e2301012, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36932873

RESUMO

Porous metal-organic framework (MOF) liquids with permanent porosity, good fluidity, and fine dispersion attract broad attention in catalysis, transportation, gas storage, and chemical separations. Yet, the design and synthesis of porous MOF liquids for drug delivery remain less explored. Herein, a simple and general strategy is reported to prepare ZIF-91 porous liquid (ZIF-91-PL) via surface modification and ion exchange. The cationic nature of ZIF-91-PL not only renders it antibacterial but also with high curcumin loading capacity and sustained release. More importantly, the acrylate group on the grafted side chain of ZIF-91-PL makes it feasible to crosslink with modified gelatin through light curing, and the obtained hydrogel shows a significantly improved healing effect on the wound of diabetes. This work demonstrates for the first time, a MOF-based porous liquid for drug delivery, and the further fabrication of composite hydrogel may have potential applications in biomedical science.


Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Porosidade , Estruturas Metalorgânicas/química , Bandagens , Cicatrização , Hidrogéis/farmacologia
8.
Inorg Chem ; 62(49): 20202-20208, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37993990

RESUMO

Single-emission luminescence sensors are less than satisfactory for complex systems due to their susceptibility to environmental disturbances. Lanthanum-based metal-organic frameworks (Ln-MOFs) with highly stable ratiometric dual-emission are regarded as promising luminescence probes owing to their fascinating ligand-to-metal energy transfer behaviors (also known as the antenna effect). Herein, we report the synthesis of a pair of isostructural europium-based MOFs (termed JNU-219 and JNU-220) by utilizing two X-shaped tetracarboxylate linkers, 4,4',4″,4‴-benzene-2,3,5,6-tetrayl-tetrabenzoate (BTEB) and 4,4',4″,4‴-pyrazine-2,3,5,6-tetrayl-tetrabenzoate (BTTB). Both JNU-219 and JNU-220 present the characteristic red luminescence of Eu3+, yet the pyrazine functionalization of the BTTB linker renders JNU-220 with significantly increased luminescence emission, almost 30 times that of JNU-219. As a result, the detection limit of JNU-220 for the ratiometric luminescence sensing of PO43- was determined to be as low as 0.22 µM, which is far superior to those of other reported MOF materials. Additionally, we demonstrate the excellent stability and reusability of JNU-220, further verifying its potential as a robust ratiometric luminescence probe.

9.
Phys Chem Chem Phys ; 25(4): 3199-3210, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625155

RESUMO

TiO2 has been extensively studied in many fields including photocatalysis, electrochemistry, optics, etc. Understanding the mechanism of the anatase-rutile phase transition (ART) process is critical for the design of TiO2-based high-activity photocatalysts and tuning its properties for other applications. In this work, the ART process using individual anatase micro-particles with a large percentage of (001) facets was monitored and studied. Phase concentration evolution obtained via Raman microscopy was correlated with the morphological evolution observed in scanning electron microscope (SEM) images. The ART of anatase microcrystals is dominated by surface nucleation and growth, but the ART processes of individual anatase particles are distinctive and depend on the various rutile nucleation sites. Two types of transformation pathways are observed. In one type of ART pathway, the rutile phase nucleated at a corner of an anatase microcrystal and grew in one direction along the edge of the crystal firstly followed by propagation over the rest of the microcrystal in the orthogonal direction on the surface and to the bulk of the crystal. The kinetics of the ART follows the first-order model with two distinct rate constants. The fast reaction rate is from the surface nucleation and growth, and the slow rate is from the bulk nucleation and growth. In the other type of ART pathway, multiple rutile nucleation sites formed simultaneously on different edges and corners of the microcrystal. The rutile phase spread over the whole crystal from these nucleation sites with a small contribution of bulk nucleation. Our study on the ART of individual micro-sized crystals bridges the material gap between bulk crystals and nano-sized TiO2 particles. The anatase/rutile co-existing particle will provide a perfect platform to study the synergistic effect between the anatase phase and the rutile phase in their catalytic performances.

10.
Entropy (Basel) ; 25(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509942

RESUMO

The unstable flow of a shaft tubular pump device (STPD) leads to energy loss, thereby reducing its efficiency. The aim of this study is to investigate the distribution pattern of energy loss in STPDs. This paper reveals that the two components with the highest proportion of energy loss are the impeller and the outlet passage. Furthermore, turbulent entropy production is the primary cause of energy loss. Due to the wall effect, the energy loss in the impeller mainly occurs near the hub and shroud. Additionally, the presence of a tip leakage vortex near the shroud further contributes to the energy loss in the region near the shroud. This results in the energy loss proportion exceeding 40% in the region with a volume fraction of 14% near the shroud. In the outlet passage, the energy loss mainly occurs in the front region, with a volume fraction of 30%, and the energy loss in this part accounts for more than 65%. Finally, this study reveals the locations of the vortex in the STPD under different flow-rate conditions, and when the distribution of energy loss is visualized, it is found that the energy loss occurs high in the vortex regions.

11.
Angew Chem Int Ed Engl ; 62(22): e202302882, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37005221

RESUMO

Designing porous materials for C2 H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2 H2 sorption and C2 H2 /CO2 separation in two isostructural NbO metal-organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA. The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2 H2 , leading to irreversible structural collapse and loss of C2 H2 /CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2 H2 to form specific π-complexation, contributing to high C2 H2 capture (28.7 cm3 g-1 at 0.01 bar and 153 cm3 g-1 at 1 bar). The reusable Pt/Cu-PDA efficiently separates C2 H2 from C2 H2 /CO2 mixtures with satisfying selectivity and C2 H2 capacity (37 min g-1 ). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.

12.
Angew Chem Int Ed Engl ; 62(43): e202312698, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37682089

RESUMO

The first coordination-saturated buckyball with a C60 molecule totally encased in an icosidodecahedral Cu30 in a (µ30 -(η2 )30 )-fashion, namely C60 @Cu30 @Cl36 N12 , has been successfully realized by a C60 -templated assembly. The 48 outmost coordinating atoms (36Cl+12N) comprise a new simple polyhedron that is described by a ccf topology. Charge transfer from (CuI , Cl) to C60 explains the expansion of the light absorption up to 700 nm, and accounts for an ultrafast photophysical process that underpins its high photothermal conversion efficiency. This work makes a giant step forward in exohedral metallofullerene (ExMF) chemistry.

13.
Angew Chem Int Ed Engl ; 62(33): e202306748, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37366116

RESUMO

Two metallofullerene frameworks (MFFs) constructed from a penta-shell Keplerate cuprofullerene chloride, C60 @Cu24 @Cl44 @Cu12 @Cl12 , have been successfully prepared via a C60 -templated symmetry-driven strategy. The icosahedral cuprofullerene chloride is assembled on a C60 molecule through [η2 -(C=C)]-CuI and CuI -Cl coordination bonds, resulting in the penta-shell Keplerate with the C60 core canopied by 24 Cu, 44 Cl, 12 Cu and 12 Cl atoms that fulfill the tic@rco@oae@ico@ico penta-shell polyhedral configuration. By sharing the outmost-shell Cl atoms, the cuprofullerene chlorides are connected into 2D or 3D (snf net) frameworks. TD-DFT calculations reveal that the charge transfer from the outmost CuI and Cl to C60 core is responsible for their light absorption expansion to near-infrared region, implying anionic halogenation may be an effective strategy to tune the light absorption properties of metallofullerene materials.

14.
Angew Chem Int Ed Engl ; 62(50): e202315020, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884445

RESUMO

The development of energy-saving technology for the efficient separation of olefin and paraffin is highly important for the chemical industry. Herein, we report a self-assembled Fe4 L6 capsule containing a hydrophobic cavity, which can be used to encapsulate and separate propylene/propane. The successful encapsulation of propylene and propane by the Fe4 L6 cage in a water solution was documented by NMR spectroscopy. The binding constants K for the Fe4 L6 cage toward propylene and propane were determined to be (5.0±0.1)×103  M-1 and (2.1±0.7)×104  M-1 in D2 O at 25 °C, respectively. Experiments and theoretical studies revealed that the cage exhibited multiple weak interactions with propylene and propane. The polymer-grade propylene (>99.5 %) can be obtained from a mixture of propylene and propane by using the Fe4 L6 cage as a separation material in a U-shaped glass tube. This work provides a new strategy for the separation of olefin/paraffin.

15.
Inorg Chem ; 61(21): 8339-8348, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35575208

RESUMO

Multicomponent metal-organic frameworks (MOFs) have received an increasing amount of attention due to their potential to produce new topologies, pore metrics, and functionalities compared to MOFs with a single metal cluster and one organic linker. Herein, five isoreticular Zn MOFs were obtained by mixing two types of linear ditopic linkers in a one-pot solvothermal synthesis. Interestingly, in the resulting Zn MOFs a six-connected cyclic trinuclear Zn(II) cluster and an eight-connected linear trinuclear Zn(II) cluster coexist, leading to an uncommon (6,8)-connected network. Catalytic activities toward the solvent-free Knoevenagel reactions were observed for all of these MOFs. Further experimental and computational studies suggest that they are Brønsted acid-base bifunctional catalysts. Through chemical modifications of dicarboxylate ligands, including their aromatic backbones and substituents, we have successfully implemented reticular chemistry for the modulations of pore sizes, surface areas, and catalytic performances in a series of four-component isoreticular MOFs.

16.
J Chem Inf Model ; 62(17): 4008-4017, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36006049

RESUMO

The structure of a protein is of great importance in determining its functionality, and this characteristic can be leveraged to train data-driven prediction models. However, the limited number of available protein structures severely limits the performance of these models. AlphaFold2 and its open-source data set of predicted protein structures have provided a promising solution to this problem, and these predicted structures are expected to benefit the model performance by increasing the number of training samples. In this work, we constructed a new data set that acted as a benchmark and implemented a state-of-the-art structure-based approach for determining whether the performance of the function prediction model can be improved by putting additional AlphaFold-predicted structures into the training set and further compared the performance differences between two models separately trained with real structures only and AlphaFold-predicted structures only. Experimental results indicated that structure-based protein function prediction models could benefit from virtual training data consisting of AlphaFold-predicted structures. First, model performances were improved in all three categories of Gene Ontology terms (GO terms) after adding predicted structures as training samples. Second, the model trained only on AlphaFold-predicted virtual samples achieved comparable performances to the model based on experimentally solved real structures, suggesting that predicted structures were almost equally effective in predicting protein functionality.


Assuntos
Proteínas , Proteínas/química
17.
Chem Soc Rev ; 50(7): 4484-4513, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595006

RESUMO

Biosensing is of vital importance for advancing public health through monitoring abnormalities in biological systems, which may be potentially associated with certain body dysfunctions. A wide range of luminescent materials have been actively pursued in the fabrication of biosensing platforms, particularly ones that can function in complex biological fluids with high selectivity and sensitivity. Recently, metal-organic frameworks (MOFs) have experienced rapid growth due to their tunable structures, large surface area, and being prone to surface engineering, etc. These virtues endow MOF materials with immense feasibility in the target-oriented construction of sensing platforms for specific applications. In this review, we extrapolated six sensing mechanisms for MOF-based photoluminescent biosensing platforms, including photoelectron transfer (PET), resonance energy transfer (RET), competition absorption (CA), structural transformation (ST), chemical conversion (CC), and quencher detachment (QD). Accordingly, recent progress of MOF-based materials in photoluminescence sensing of biomolecules, biomarkers, drugs, and toxins was highlighted. The objective of this review is to provide readers with an extensive overview of the design and synthesis of MOF materials for photoluminescence biosensing. The challenges and outlook are briefly discussed at the end.


Assuntos
Técnicas Biossensoriais , Luminescência , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Processos Fotoquímicos
18.
J Am Chem Soc ; 143(50): 21340-21349, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878287

RESUMO

Charge separation plays a crucial role in regulating photochemical properties and therefore warrants consideration in designing photocatalysts. Metal-organic frameworks (MOFs) are emerging as promising candidates for heterogeneous photocatalysis due to their structural designability and tunability of photon absorption. Herein, we report the design of a pyrazole-benzothiadiazole-pyrazole organic molecule bearing a donor-acceptor-donor conjugated π-system for fast charge separation. Further attempts to integrate such a photosensitizer into MOFs afford a more effective heterogeneous photocatalyst (JNU-204). Under visible-light irradiation, three aerobic oxidation reactions involving different oxygenation pathways were achieved on JNU-204. Recycling experiments were conducted to demonstrate the stability and reusability of JNU-204 as a robust heterogeneous photocatalyst. Furthermore, we illustrate its applications in the facile synthesis of pyrrolo[2,1-a]isoquinoline-containing heterocycles, core skeletons of a family of marine natural products. JNU-204 is an exemplary MOF platform with good photon absorption, suitable band gap, fast charge separation, and extraordinary chemical stability for proceeding with aerobic oxidation reactions under visible-light irradiation.

19.
J Am Chem Soc ; 142(13): 5943-5947, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32187495

RESUMO

Exohedral cuprofullerenes with 6-, 12-, or 24-nuclearity were obtained by utilizing fluorocarboxylic/dicarboxylic acid under solvothermal conditions. The 24-nuclear molecule presents a C60@Cu24 core-shell structure with a rhombicuboctahedron Cu24 coated on the C60 core, representing the highest nuclearity in metallofullerene. The resultant complexes show an efficient absorption of visible light as opposed to the pristine C60. TD-DFT calculations revealed the charge transfer from Cu(I) and O atoms to the fullerene moiety dominates the photophysical process.

20.
J Am Chem Soc ; 141(51): 20390-20396, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782928

RESUMO

Metal-organic frameworks (MOFs) with open metal sites (OMSs) have been shown to preferentially adsorb unsaturated hydrocarbons such as C2H4 due to the formation of π-complexation. However, the adsorption capacity and selectivity might well be dampened under humid conditions because OMSs could be easily poisoned in the presence of water vapor. C2H6-selective adsorbents with less hydrophilic environments, on the other hand, not only could effectively minimize the impact of humidity on separation capacity but also could directly produce high-purity C2H4 from C2H6/C2H4 mixtures. Here, we report a C2H6-selective MOF (JNU-2) underlying a rare xae topology. Its cage-like cavities are interconnected through apertures with a limiting diameter of ca. 3.7 Å, which is in the domain of kinetic diameters of C2H4 and C2H6 molecules. Molecular modeling studies suggest the four oxygen atoms on aperture are poised to preferentially interact with C2H6 through multiple C-H···O hydrogen bonding, rendering JNU-2 an enhanced C2H6 selectivity. Indeed, experimental results reveal that JNU-2 not only takes up a great amount of C2H6 comparable to other top-performing C2H6-selective MOFs but also displays excellent separation capacity even under humid conditions; moreover, it can be easily regenerated at room temperature owing to its moderate adsorption enthalpy. This work successfully demonstrated a strategy of balancing adsorption capacity and selectivity for C2H6 by designing MOF materials with cavities interconnected through tailored apertures. The apertures function as screening sites for C2H6 selectivity, while the internal cavities provide space for large adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA