Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499226

RESUMO

Currently, the production of furan aldehydes from raw biomass suffers from low furfural yield and high energy consumption. In this study, a recyclable and practical method was explored for the preparation of furfural from corn stover by the one-pot reaction by acidic lithium bromide solution (ALBS) without pretreatment and enzymolysis. In the ALBS reaction, the furan aldehydes were generated by the degradation of lignocellulose; however, the products were unstable and were further dehydrated to form humins. So, dehydration reaction was inhibited in this study, and the high yield of furan aldehydes was obtained, in which 2.94 g/L of furfural and 2.78 g/L of 5-hydroxymethyl furfural (5-HMF) were generated with high solid loading (10 wt%), the presence of commercial catalyst ZSM-5 and co-solvent tetrahydrofuran (THF) at 140 °C for 200 min. Via this method, almost 100% of hemicellulose was transformed to furfural, and 40.71% of cellulose was transformed to 5-HMF, which was based on the theoretical yield of HMF (8.35 g) from glucose (29.30 g) produced from cellulose. After the reaction, the catalyst ZSM-5 was the main component in the solid residue and kept a suitable performance. THF azeotrope was easily separated from the slurry by evaporation. During the removal of THF, lignin was precipitated from the liquid phase and showed lower molecular weight and abundant active groups, which was a potential feedstock for producing valuable aromatics and polymers. Thus, in a one-pot reaction, the ideal yield of furan aldehydes from raw biomass was obtained on a lab scale, and the catalyst, THF, and LiBr were easily recycled, which provided an option to realize the economical production of sustainable furan aldehydes from raw biomass.


Assuntos
Aldeídos , Zea mays , Furaldeído/química , Ácidos , Celulose
2.
BMC Plant Biol ; 20(1): 528, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213376

RESUMO

BACKGROUND: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered. RESULTS: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a 'blue' module highly associated with cellulose synthesis and a 'turquoise' module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes. CONCLUSIONS: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


Assuntos
Metabolismo dos Carboidratos/genética , Celulose/metabolismo , Genoma de Planta/genética , Lignina/metabolismo , Pennisetum/genética , Transcriptoma , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Lignina/análise , Redes e Vias Metabólicas/genética , Especificidade de Órgãos , Pennisetum/metabolismo , Polissacarídeos/metabolismo , Propano/metabolismo , Análise de Sequência de RNA , Amido/metabolismo , Sacarose/metabolismo
3.
Int J Biol Macromol ; 266(Pt 1): 130836, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492700

RESUMO

Glycosylation, a general post-translational modification for fungal cellulase, has been shown to affect cellulase binding to its substrate. However, the exact impact of glycosylation on cellulase-lignin interaction remain unclear. Here, we demonstrated that the lignin isolated from tetrahydrofuran-pretreated corn stover exhibits strong adsorption capability to cellulase due to its negatively charged and porous structure. For the cellulases with varying glycosylation levels, the less-glycosylated protein showed high adsorption capability to lignin, and that trend was observed for the main cellulase components secreted by Penicillium oxilicum, including endoglucanase PoCel5B, cellobiohydrolase PoCel7A-2, and ß-glucosidase PoBgl1. Additionally, N-glycan sites and motifs were examined using mass spectrometry, and protein structures with N-glycans were constructed, where PoBgl1 and PoCel7A-2 contained 13 and 1 glycosylated sites respectively. The results of molecular dynamics simulations indicated that the N-glycans impacted on the solvent-accessible surface area and secondary structure of protein, and the binding conformation of lignin fragment on cellulase, resulting in a decrease in binding energy (14 kcal/mol for PoBgl1 and 13 kcal/mol for PoCel7A-2), particularly for van der Waals and electrostatic interaction. Those findings suggested that glycosylation negatively impacted the lignin-cellulase interaction, providing a theoretical basis for the rational engineering of enzymes to reduce lignin-enzyme interaction.


Assuntos
Celulase , Lignina , Simulação de Dinâmica Molecular , Zea mays , Glicosilação , Lignina/química , Zea mays/química , Celulase/química , Celulase/metabolismo , Adsorção , Penicillium/enzimologia , Penicillium/química , Ligação Proteica , Polissacarídeos/química
4.
Int J Biol Macromol ; 264(Pt 1): 129762, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281535

RESUMO

Lignin, as an amorphous three-dimensional aromatic polymer, was able to self-assemble into lignin nanoparticles (LNPs) to realize valorization of lignin. Here, lignin-xylan extractives were extracted from grape seed (GS) and poplar by acidic THF at room temperature, and effectively produced lignin-xylan nanospheres via spin evaporation. The morphology and chemical properties of nanospheres were determined by its natural origins, consequently influencing its application. For the lignin-xylan extractive from grape seed, the lignin was composed of guaiacyl (G) and p-hydroxylphenyl (H) units and the hollowed nanospheres (GS-LNPs) with 362.72 nm diameter was produced. The extractive from poplar was composed of G-syringyl (S) typed lignin (80.30 %) and xylan (12.33 %), that can assemble into LNPs with smaller size (229.87 nm), better PDI (0.1), and light color. The hybrid particles showed the qualities of lignin and xylan, that properties led to the LNPs@PVA composite films with UV-blocking capability, strong mechanical strength and hydrophobicity, and transparency ability of visible light. P-LNPs showed better performance as the film additives, due to its lower particles size and high content of unconjugated -OH from xylan. Xylan was significant in the composite films, and lowering the xylan content resulted in the decrease of the composite film's mechanical properties and hydrophobicity.


Assuntos
Lignina , Nanosferas , Lignina/química , Xilanos/química , Polímeros
5.
Bioresour Technol ; 394: 130242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145760

RESUMO

Brewer's spent grain (BSG) is a major low-value by-product of beer industry. To realize the high value application of BSG, this work proposed a strategy to produce single cell protein (SCP) with oligosaccharide prebiotics from BSG, via ammoniation pretreatment, enzymatic hydrolysis, and fermentation. The optimum conditions of ammoniation pretreatment obtained by response surface method were 11 % ammonia dosage (w/w), 63 °C for 26 h. Suitable enzyme and yeast were screened to enhance the conversion of cellulose and hemicellulose in BSG into sugars and maximize the SCP yield. It was shown that using lignocellulolytic enzyme SP from Penicillium oxalicum and Trichosporon cutaneum, about 310 g of SCP with 80 g of arabinoxylo-oligosaccharides were obtained from 1000 g of BSG. This process is low cost, high efficiency, and easy to implement, which has good industrial application prospects.


Assuntos
Celulose , Proteínas Alimentares , Grão Comestível , Fermentação , Grão Comestível/metabolismo , Celulose/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Bioresour Technol ; 343: 126130, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655777

RESUMO

Herein, acidic concentrated lithium bromide-water system was efficiently carried out to synthesize levulinic acid (LA) from raw lignocellulose by two-step treatment. Saccharification was processed in 1st step, and 80.96 wt% glucose and 85.60 wt% xylose were yielded based on their theoretical yield from poplar at 110 °C for 20 min. The hydrolysate after solid residual lignin (SRL) separation was converted into LA and furfural by thermal treatment (130 °C) in the 2nd step, where 67.0 wt% LA and 48.0 wt% furfural were yielded. The SRL in 1st step, with high hydrophobicity and uniform dispersity, was used to prepare lignin nanoparticles (LNPs), which showed tailored size (100-200 nm diameters) and morphology in solid or hollow structure with single hole. Additionally, the residue in 2nd step was suggested as biochar. So far, this study offered a simple pathway for utilization of raw lignocellulose in water system, resulting in high yields of LA and LNPs.


Assuntos
Lignina , Água , Brometos , Ácidos Levulínicos , Compostos de Lítio
7.
Mol Ecol Resour ; 22(6): 2363-2378, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35347881

RESUMO

Elephant grass (Pennisetum purpureum Schum) is an important forage, biofuels and industrial plant widely distributed in tropical and subtropical areas globally. It is characterized with robust growth and high biomass. We sequenced its allopolyploid genome and assembled 2.07 Gb into A' and B subgenomes of 14 chromosomes with scaffold N50 of 8.47 Mb, yielding a total of 77,139 genes. The allotetraploid speciation occurred approximately 15 Ma after the divergence between Setaria italica and Pennisetum glaucum, according to a phylogenetic analysis of Pennisetum species. Double whole-genome duplication (WGD) and polyploidization events resulted in large-scale gene expansion, especially in the key steps of growth and biomass accumulation. Integrated transcriptome profiling revealed the functional divergence between subgenomes A' and B. A' subgenome mainly contributed to plant growth, development and photosynthesis, whereas the B subgenome was primarily responsible for effective transportation and resistance to stimulation. Some key gene families related to cellulose biosynthesis were expanded and highly expressed in stems, which could explain the high cellulose content in elephant grass. Our findings provide deep insights into genetic evolution of elephant grass and will aid future biological research and breeding, even for other grasses in the family Poaceae.


Assuntos
Cenchrus , Pennisetum , Biomassa , Celulose , Cenchrus/genética , Cromossomos , Pennisetum/genética , Filogenia , Melhoramento Vegetal
8.
Bioresour Technol ; 310: 123522, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32423588

RESUMO

The by-product from acidic concentrated LiBr hydrolyzed (ALBH) crop residues, as ALBH biochar, showed great potential as adsorbent for removing heavy metal pollution. By optimizing the treatment conditions, this study indicated that 22.44% of cellulose was hydrolyzed to glucose, and the residues showed 86.96 mg/g of adsorption capacity to Cr(VI) after T6 treatment of elephant grass. With T3 treatment (5% solid ratio, 0.5 M HCl, at 140 °C for 150 min), the residues from treated elephant grass got 100 mg/g adsorption capability to Cr(VI). Meanwhile, the carbon sphere with uniform, dispersive and in diameter of ~100 nm was formed via the further dehydration and condensation reaction of saccharides. Among the raw feedstocks, the relative high content of cellulose (40.30%) caused elephant grass as the optimal option for carbon spheres production.


Assuntos
Nanosferas , Poluentes Químicos da Água , Adsorção , Carbono , Carvão Vegetal , Cromo , Monossacarídeos
9.
J Hazard Mater ; 398: 123146, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768845

RESUMO

Poly-γ-glutamic acid (γ-PGA) could efficiently stabilize heavy metals in the environment. This study characterized the effects of two plant growth-promoting and γ-PGA-producing bacteria Bacillus subtilis W7 and Bacillus amyloliquefaciens W25 on Cd immobilization and γ-PGA production in soil filtrate and on the biomass and Cd uptake by lettuce in Cd-contaminated soil, the impact of these strains on the rhizosphere soil bacterial community was also evaluated. The strains reduced Cd concentration (16-75 %) in soil filtrate and strain W25 had a higher ability of producing γ-PGA and immobilizing Cd than strain W7. Compared with the control, the strains significantly increased the biomass (41-85 %) and reduced Cd uptake (19-41 %) by lettuce, reduced available Cd content (25-37 %) and increased the relative abundance of γ-PGA-producing bacteria (24-30 %) in Cd-contaminated soil, among which the effects of strain W25 were better than that of strain W7. Besides, these isolates also increased soil pH value, urease activity and the relative abundance of plant growth-promoting and metal-immobilizing bacteria such as Sphingomonas and Bacillus. In summary, the two strains reduced soil available Cd and lettuce Cd uptake by increasing the pH value, urease activity and the abundance of γ-PGA-producing bacteria, and regulating bacterial community structure in rhizosphere soil.


Assuntos
Microbiota , Poluentes do Solo , Bactérias , Cádmio/análise , Ácido Glutâmico , Lactuca , Ácido Poliglutâmico/análogos & derivados , Rizosfera , Solo , Poluentes do Solo/análise
10.
Bioresour Technol ; 296: 122348, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31734059

RESUMO

In this work, the hydrolysis residue produced from the acidic concentrated lithium bromide hydrolysis (ALBH) of wheat straw, corn stover and elephant grass were characterized as biochar. The ALBH biochar as the black power had high content of carbon (49.65-55 wt%), specific surface areas (4.53-7.79 m2/g), porous structures (micropores, mesopores and macropores) and abundant oxygen functional groups (hydroxy, carbonyl, ester and ketone groups). These properties made ALBH biochar as a potential adsorbent for environmental remediation, with relatively high removal efficiency for a variety of heavy metal ions, especially hexavalent chromium (Cr(VI)). Therefore, ALBH technology may be an efficient strategy for synthesis of bio-char along with fermentable sugars, which met the concern of sustainability and green chemistry.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Brometos , Cromo , Compostos de Lítio
11.
Biotechnol Biofuels ; 12: 297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890025

RESUMO

BACKGROUND: The bioconversion of lignocellulose to fermentable C5/C6-saccharides is composed of pretreatment and enzymatic hydrolysis. Lignin, as one of the main components, resists lignocellulose to be bio-digested. Alkali and organosolv treatments were reported to be able to delignify feedstocks and loose lignocellulose structure. In addition, the use of additives was an alternative way to block lignin and reduce the binding of cellulases to lignin during hydrolysis. However, the relatively high cost of these additives limits their commercial application. RESULTS: This study explored the feasibility of using elephant grass (Pennisetum purpureum) and reed straw (Phragmites australis), both of which are important fibrous plants with high biomass, no-occupation of cultivated land, and soil phytoremediation, as feedstocks for bio-saccharification. Compared with typical agricultural residues, elephant grass and reed straw contained high contents of cellulose and hemicellulose. However, lignin droplets on the surface of elephant grass and the high lignin content in reed straw limited their hydrolysis performances. High hydrolysis yield was obtained for reed straw after organosolv and alkali pretreatments via increasing cellulose content and removing lignin. However, the hydrolysis of elephant grass was only enhanced by organosolv pretreatment. Further study showed that the addition of bovine serum albumin (BSA) or thioredoxin with His- and S-Tags (Trx-His-S) improved the hydrolysis of alkali-pretreated elephant grass. In particular, Trx-His-S was first used as an additive in lignocellulose saccharification. Its structural and catalytic properties were supposed to be beneficial for enzymatic hydrolysis. CONCLUSIONS: Elephant grass and reed straw could be used as feedstocks for bioconversion. Organosolv and alkali pretreatments improved their enzymatic sugar production; however, the increase in hydrolysis yield of pretreated elephant grass was not as effective as that of reed straw. During the hydrolysis of alkali-pretreated elephant grass, Trx-His-S performed well as additive, and its structural and catalytic capability was beneficial for enzymatic hydrolysis.

12.
Bioresour Technol ; 267: 110-116, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30014989

RESUMO

Nonproductive adsorption of cellulase to lignin dramatically influenced the hydrolysis efficiency of lignocellulose. By comparing the adsorption behaviors of CBH and EG, we found that the adsorption of EG to lignin showed lower adsorption velocity and capacity versus CBH. During the adsorption of EG to lignin, carbohydrate binding domain (CBM) and catalytic domain (CD) both played an important role by a two-step adsorption process, in which CD slowly bond on lignin and developed stronger interaction with lignin. The optimal binding position of EG on lignin was consistent with that on polysaccharide located in the open catalytic tunnel. So, the adsorption of EG to lignin not only limited the movement of enzyme, but also restricted the catalytic ability of enzyme, which dramatically influenced enzymatic hydrolysis. Increasing the proportion of EG in cellulase cocktails or engineering "weak lignin adsorbed" EG was necessary to relieve the influence of lignin adsorption on hydrolysis.


Assuntos
Celulase/metabolismo , Lignina/química , Adsorção , Domínio Catalítico , Celulose , Hidrólise
13.
Bioresour Technol ; 267: 235-241, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30025319

RESUMO

Because cellulase was the main enzyme used in bioconversion of lignocellulose, it was a valid way to reduce the hydrolysis cost by increasing the adsorption and hydrolysis efficiency of cellulase. In this study, modified cellobiohydrolases (CBHs) and endoglucanases (EGs) were constructed. Two engineered cellulases CBH-TrCBMV27E,P30D,Link1 and EG-TrCBMV27E,P30D,Link1 well-performed during hydrolysis. Compared to wild-type enzymes, EG-TrCBMV27E,P30D,Link1 had relatively less adsorption ability to lignin and greater affinity to cellulose, especially Avicel. However, for CBH-TrCBMV27E,P30D,Link1, the hydrolysis manner was changed and in favor to hydrolysis process, although the adsorption properties were unexpected. It suggested that various binding conformations of polysaccharide on CBMs hypothetically resulted in different functions of CBMs, including binding ability, processive and digestive properties on fiber surface. Fusion of T. r-CBMV27E,P30D,Link1 to cellulase, both CBH and EG, gave the destruction ability of enzyme and increased the accessible surface of substrate to cellulase, enhanced the adsorption and hydrolysis efficiency of cellulase.


Assuntos
Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/metabolismo , Adsorção , Celulases , Celulose , Hidrólise , Lignina
14.
Bioresour Technol ; 245(Pt A): 819-825, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28926914

RESUMO

Non-productive adsorption of cellulase onto lignin restricted the movement of cellulase and also hindered the cellulase recycling in bioconversion of lignocellulose. In this study, effect of temperature and pH on adsorption and desorption of cellobiohydrolase (CBH) on lignin and its possible mechanism were discussed. It found that pH value and temperature influenced the adsorption and desorption behaviors of CBH on lignin. Different thermodynamic models suggested that the action between lignin and CBH was physical action. More CBH was adsorbed onto lignin, but lower initial adsorption velocity was detected at 50°C comparing with 4°C. Elevating pH value could improve desorption of cellulase from lignin. The changes of hydrophobicity and electric potential on protein surface may partially explain the impact of environmental conditions on the adsorption and desorption behaviors of CBH on lignin, and comparing to electrical interaction, the hydrophobicity may be the dominating factor influencing the behaviors.


Assuntos
Adsorção , Celulose 1,4-beta-Celobiosidase/metabolismo , Celulase , Hidrólise , Lignina , Temperatura
15.
Biotechnol Biofuels ; 9: 118, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274766

RESUMO

BACKGROUND: In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize the components of cellulase mixture, genetically engineer high-efficiency cellulase, and reduce cost of bioconversion. Most lignin is not removed during liquid hot water (LHW) pretreatment, and the characteristics of lignin in solid substrate are also changed. To understand the interactions between cellulase and lignin, this study investigated the change in the characteristics of lignin obtained from corn stover, as well as the behavior of cellulase adsorption onto lignin, under various severities of LHW pretreatment. RESULTS: LHW pretreatment removed most hemicellulose and some lignin in corn stover, as well as improved enzymatic digestibility of corn stover. After LHW pretreatment, the molecular weight of lignin obviously increased, whereas its polydispersity decreased and became more negative. The hydrophobicity and functional groups in lignin also changed. Adsorption of cellulase from Penicillium oxalicum onto lignin isolated from corn stover was enhanced after LHW pretreatment, and increased under increasing pretreatment severity. Different adsorption behaviors were observed in different lignin samples and components of cellulase mixtures, even in different cellobiohydrolases (CBHs), endo-beta-1, 4-glucanases (EGs). The greatest reduction in enzyme activity caused by lignin was observed in CBH, followed by that in xylanase and then in EG and ß-Glucosidase (BGL). The adsorption behavior exerted different effects on subsequent enzymatic hydrolysis of various biomass substrates. Hydrophobic and electrostatic interactions may be important factors affecting different adsorption behaviors between lignin and cellulase. CONCLUSIONS: LHW pretreatment changed the characteristics of the remaining lignin in corn stover, thus affected the adsorption behavior of lignin toward cellulase. For different protein components in cellulase solution from P. oxalicum, electrostatic action was a main factor influencing the adsorption of EG and xylanase onto lignin in corn stover, while hydrophobicity affected the adsorption of CBH and BGL onto lignin.

16.
Sci Rep ; 6: 38374, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917912

RESUMO

Xylanase is commonly applied in pulp and paper industries to ease cost-related and environmental pressures. The effect of xylanase treatment on pulp bleaching is well-established, however, few studies were conducted on the effects of xylanase treatment in pulp yellowing, especially the mechanism of pulp yellowing inhibition by xylanase treatment. In this study, pure xylanase (EC 3.2.1.8) was applied to treat wheat straw chemical pulp (CP) and poplar chemi-thermo-mechanical pulp (CTMP) to determine their effects on pulp brightness and on light- and heat-induced yellowing. The xylanase treatment decreased the post-color number of the pulps during light- and heat-induced yellowing. However, differences were observed in the yellowing inhibition between the wheat straw CP and poplar CTMP. The changes in chemical components of pulps after the xylanase treatment, for example, lignin, hemicellulose, and HexA contents, and analysis of UV-vis absorption spectra and Fourier transform infrared-attenuated total reflectance spectrum were used to explore the pulp yellowing inhibition causes by the xylanase treatment.


Assuntos
Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/química , Lignina/química , Liriodendron/química , Papel , Triticum/química , Biomassa , Cor , Temperatura Alta , Luz , Processos Fotoquímicos , Caules de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA