Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(4): e30535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38348687

RESUMO

Strong evidence has indicated that upregulation of chemokine (CC motif) ligand-2 (CCL2) expression and the presence of an inflammatory tumor microenvironment significantly contribute to the migratory and invasive properties of oral squamous cell carcinoma, specifically oral tongue squamous cell carcinoma (OTSCC). However, the precise epigenetic mechanism responsible for enhanced CCL2 expression in response to the inflammatory mediator tumor necrosis factor alpha (TNF-α) in OTSCC remains inadequately elucidated. We have demonstrated that the production of CCL2 can be induced by TNF-α, and this induction is mediated by the chromatin remodel protein BRG1. Through the use of a chromatin immunoprecipitation (ChIP) assay, we have found that BRG1 was involved in the recruitment of acetylated histones H3 and H4 at the CCL2 promoter, thereby activating TNF-α-induced CCL2 transcription. Furthermore, we have observed that recruitment of NF-κB p65 to the CCL2 promoter was increased following BRG1 overexpression and decreased after BRG1 knockdown in OTSCC cells. Our Re-ChIP assay has shown that BRG1 knockdown completely inhibits the recruitment of both acetylated histone H3 or H4 and NF-κB to the CCL2 promoter. In summary, the findings of our study demonstrate that BRG1 plays a significant role in mediating the production of CCL2 in OTSCC cells in response to TNF-α stimulation. This process involves the cooperative action of acetylated histone and NF-κB recruitment to the CCL2 promoter site. Our data suggest that BRG1 serves as a critical epigenetic mediator in the regulation of TNF-α-induced CCL2 transcription in OTSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Fator de Necrose Tumoral alfa , Humanos , Carcinoma de Células Escamosas/genética , Quimiocina CCL2/metabolismo , Epigênese Genética , Histonas/metabolismo , Neoplasias Bucais , NF-kappa B/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua/genética , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
2.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37052956

RESUMO

Coronaviruses are single-stranded, positive-sense RNA viruses that can infect many mammal and avian species. The Spike (S) protein of coronaviruses binds to a receptor on the host cell surface to promote viral entry. The interactions between the S proteins of coronaviruses and receptors of host cells are extraordinarily complex, with coronaviruses from different genera being able to recognize the same receptor and coronaviruses from the same genus able to bind distinct receptors. As the coronavirus disease 2019 pandemic has developed, many changes in the S protein have been under positive selection by altering the receptor-binding affinity, reducing antibody neutralization activities, or affecting T-cell responses. It is intriguing to determine whether the selection pressure on the S gene differs between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses due to the host shift from nonhuman animals to humans. Here, we show that the S gene, particularly the S1 region, has experienced positive selection in both SARS-CoV-2 and other coronaviruses. Although the S1 N-terminal domain exhibits signals of positive selection in the pairwise comparisons in all four coronavirus genera, positive selection is primarily detected in the S1 C-terminal domain (the receptor-binding domain) in the ongoing evolution of SARS-CoV-2, possibly owing to the change in host settings and the widespread natural infection and SARS-CoV-2 vaccination in humans.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19 , Mamíferos/metabolismo
3.
Annu Rev Genet ; 50: 347-369, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27686281

RESUMO

Although tumorigenesis has been accepted as an evolutionary process ( 20 , 102 ), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms ( 20 , 29 ). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors. The Cancer Genome Atlas (TCGA) data show a low degree of convergent evolution in Stage I, where genetic changes are not extensively shared among cases. An equally important, albeit much less highlighted, discovery using TCGA data is that there is almost no net selection in cancer evolution. Both positive and negative selection are evident but they neatly cancel each other out, rendering total selection ineffective in the absence of recombination. The efficacy of selection is even lower in Stage II, where neutral (non-Darwinian) evolution is increasingly supported by high-density sampling studies ( 81 , 123 ). Because natural selection is not a strong deterministic force, cancers usually evolve divergently even in similar tissue environments.


Assuntos
Evolução Biológica , Neoplasias/etiologia , Seleção Genética , Animais , Ecologia , Variação Genética , Genética Populacional , Genoma Humano , Genótipo , Humanos , Neoplasias/genética , Fenótipo , Crescimento Demográfico
4.
Biotechnol Bioeng ; 121(2): 749-756, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994543

RESUMO

Streptococcus thermophilus has been extensively used in industrial milk fermentation. However, lack of efficient genetic manipulation approaches greatly hampered the industrial application of this species. Here, we repurposed the endogenous CRISPR1 and CRISPR3 systems, both belong to type II-A CRISPR-Cas9, by delivering a self-targeting CRISPR array with DNA repair template into S. thermophilus LMD-9. We achieved 785-bp deletion in lacZ gene by repurposing CRISPR1 and CRISPR3 systems with efficiencies of 35% and 59%, respectively, when 1-kb DNA repair template was provided. While providing with 1.5-kb repair template, the editing efficiency for deletion in lacZ gene reached 90% using CRISPR3 systems. Diverse editing outcomes encompassing a stop code insertion and single nucleotide variation within lacZ, as well as a 234-bp DNA fragment insertion upstream of ster_0903, were generated with high efficiencies of 75%-100% using the CRISPR3 system. Harnessing the customized endogenous CRISPR3 system to target six genes of eps gene cluster, we obtained six single-gene knockout mutants with efficiencies of 29%-80%, and proved that the epsA, epsE, and epsG were the key genes affecting exopolysaccharides biosynthesis in S. thermophilus LMD-9. Altogether, repurposing the native type II-A CRISPR-Cas9 can be served as a toolkit for precise genome engineering in S. thermophilus for biotechnological applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Streptococcus thermophilus/genética , DNA
5.
Anal Bioanal Chem ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363305

RESUMO

Nanozyme technology has gained significant regard and been successfully implemented in various applications including chemical sensing, bio-medicine, and environmental monitoring. Fe-CDs were synthesized and characterized well in this study. As compared to HRP (3.7 mM), the Fe-CDs exhibited a higher affinity towards H2O2 (0.2 mM) using the steady-state kinetic assay and stronger catalytic capability by changing the color of TMB to the blue color of the oxidized state, oxTMB. Additionally, an efficient peroxidase mimic, Fe-CDs/GOx, based on the hybrid cascade system to produce in situ H2O2 for the visual detection of glucose (color change: colorless to blue, and then to green), has been developed in detail, with limits of detection (LODs) for H2O2 and glucose of 0.33 µM and 1.17 µM, respectively. The changes further demonstrate a linear relationship between absorbance and H2O2 concentration, ranging from 10 to 60 µM, and for glucose (1 to 60 µM). To assess the accuracy and detection capability of the Fe-CDs/GOx system, we evaluated a real human serum sample obtained from adult males in a local hospital. In conclusion, Fe-CDs serving as a peroxidase mimic have the potential for various applications in the fields of biomedicine and nanozymes.

6.
J Cell Mol Med ; 27(3): 340-352, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36628597

RESUMO

Lysosomes, a central regulator of autophagy, play a critical role in tumour growth. Lysosomal protease cathepsin D can initiate apoptosis when released from lysosomes into the cytosol. In this study, we observed that Musca domestica cecropin (Mdc) 1-8 (M1-8), a small anti-tumour peptide derived from Mdc, inhibits hepatoma cell growth by blocking autophagy-lysosome fusion. This effect is likely achieved by targeting lysosomes to activate lysosomal protease D. Additionally, we examined whether lysosomal content and cathepsin D release were involved in M1-8-induced apoptosis. After exposure to M1-8, human hepatoma HepG2 cells rapidly co-localized with lysosomes, disrupted lysosomal integrity, caused leakage of lysosomal protease cathepsin D, caspase activation and mitochondrial membrane potential changes; and promoted cell apoptosis. Interestingly, in M1-8-treated HepG2 cells, autophagic protein content increased and the lysosome-autophagosome fusion was inhibited, suggesting that M1-8 can cause apoptosis through autophagy and lysosomes. This result indicates that a small accumulation of autophagy and autolysosome inhibition in cells can cause cell death. Taken together, these data suggest a novel insight into the regulatory mechanisms of M1-8 in autophagy and lysosomes, which may facilitate the development of M1-8 as a potential cancer therapeutic agent.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Catepsina D/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Peptídeos Antimicrobianos , Apoptose , Autofagia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo
7.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234869

RESUMO

In new epidemics after the host shift, the pathogens may experience accelerated evolution driven by novel selective pressures. When the accelerated evolution enters a positive feedback loop with the expanding epidemics, the pathogen's runaway evolution may be triggered. To test this possibility in coronavirus disease 2019 (COVID-19), we analyze the extensive databases and identify five major waves of strains, one replacing the previous one in 2020-2021. The mutations differ entirely between waves and the number of mutations continues to increase, from 3-4 to 21-31. The latest wave in the fall of 2021 is the Delta strain which accrues 31 new mutations to become highly prevalent. Interestingly, these new mutations in Delta strain emerge in multiple stages with each stage driven by 6-12 coding mutations that form a fitness group. In short, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the oldest to the youngest wave, and from the earlier to the later stages of the Delta wave, is a process of acceleration with more and more mutations. The global increase in the viral population size (M(t), at time t) and the mutation accumulation (R(t)) may have indeed triggered the runaway evolution in late 2020, leading to the highly evolved Alpha and then Delta strain. To suppress the pandemic, it is crucial to break the positive feedback loop between M(t) and R(t), neither of which has yet to be effectively dampened by late 2021. New waves after Delta, hence, should not be surprising.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutação , Pandemias , SARS-CoV-2/genética
8.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850073

RESUMO

Spatial genetic and phenotypic diversity within solid tumors has been well documented. Nevertheless, how this heterogeneity affects temporal dynamics of tumorigenesis has not been rigorously examined because solid tumors do not evolve as the standard population genetic model due to the spatial constraint. We therefore, propose a neutral spatial (NS) model whereby the mutation accumulation increases toward the periphery; the genealogical relationship is spatially determined and the selection efficacy is blunted (due to kin competition). In this model, neutral mutations are accrued and spatially distributed in manners different from those of advantageous mutations. Importantly, the distinctions could be blurred in the conventional model. To test the NS model, we performed a three-dimensional multiple microsampling of two hepatocellular carcinomas. Whole-genome sequencing (WGS) revealed a 2-fold increase in mutations going from the center to the periphery. The operation of natural selection can then be tested by examining the spatially determined clonal relationships and the clonal sizes. Due to limited migration, only the expansion of highly advantageous clones can sweep through a large part of the tumor to reveal the selective advantages. Hence, even multiregional sampling can only reveal a fraction of fitness differences in solid tumors. Our results suggest that the NS patterns are crucial for testing the influence of natural selection during tumorigenesis, especially for small solid tumors.


Assuntos
Neoplasias , Carcinogênese , Humanos , Mutação , Neoplasias/genética , Seleção Genética
9.
Breast Cancer Res Treat ; 201(3): 353-366, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433992

RESUMO

PURPOSE: Breast cancer (BC) is the most frequent malignant tumor in women worldwide with exceptionally high morbidity. The RNA-binding protein MEX3A plays a crucial role in genesis and progression of multiple cancers. We attempted to explore its clinicopathological and functional significance in BC in which MEX3A is expressed. METHODS: The expression of MEX3A detected by RT-qPCR and correlated the results with clinicopathological variables in 53 BC patients. MEX3A and IGFBP4 profile data of BC patients were downloaded from TCGA and GEO database. Kaplan-Meier (KM) analysis was used to estimate the survival rate of BC patients. Western Blot, CCK-8, EdU, colony formation and flow cytometry were performed to investigate the role of MEX3A and IGFBP4 in BC cell proliferation, invasion and cell cycle in vitro. A subcutaneous tumor mouse model was constructed to analyze in vivo growth of BC cells after MEX3A knockdown. The interactions among MEX3A and IGFBP4 were measured by RNA pull-down and RNA immunoprecipitation. RESULTS: The expression of MEX3A was upregulated in BC tissues compared to adjacent tissues and high expression of MEX3A was associated with poor prognosis. Subsequent in vitro studies demonstrated that MEX3A knockdown inhibited BC cells proliferation and migration, as well as xenograft tumor growth in vivo. The expression of IGFBP4 was significantly negatively correlated with MEX3A in BC tissues. Mechanistic investigation showed that MEX3A binds to IGFBP4 mRNA in BC cells, decreasing IGFBP4 mRNA levels, which further activated the PI3K/AKT and other downstream signaling pathways implicated cell cycle progression and cell migration. CONCLUSION: Our results indicate that MEX3A plays a prominent oncogenic role in BC tumorigenesis and progression by targeting IGFBP4 mRNA and activating PI3K/AKT signaling, which can be used as a novel therapeutic target for BC.


Assuntos
Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , RNA , Movimento Celular/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética
10.
Crit Rev Biotechnol ; : 1-14, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380345

RESUMO

Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.

11.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902184

RESUMO

SWI/SNF related, matrix associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4, also known as BRG1), an ATPase subunit of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, plays an important regulatory role in many cytogenetic and cytological processes during cancer development. However, the biological function and mechanism of SMARCA4 in oral squamous cell carcinoma (OSCC) remain unclear. The present study aimed to investigate the role of SMARCA4 in OSCC and its potential mechanism. Using a tissue microarray, SMARCA4 expression was found to be highly upregulated in OSCC tissues. In addition, SMARCA4 upregulate expression led to increased migration and invasion of OSCC cells in vitro, as well as tumor growth and invasion in vivo. These events were associated with the promotion of epithelial-mesenchymal transition (EMT). Bioinformatic analysis and luciferase reporter assay confirmed that SMARCA4 is a target gene of microRNA miR-199a-5p. Further mechanistic studies showed that the miR-199a-5p regulated SMARCA4 can promote the invasion and metastasis of tumor cells through EMT. These findings indicate that the miR-199a-5p- SMARCA4 axis plays a role in tumorigenesis by promoting OSCC cell invasion and metastasis through EMT regulation. Our findings provide insights into the role of SMARCA4 in OSCC and the mechanism involved, which may have important implications for therapeutic purposes.


Assuntos
Carcinogênese , DNA Helicases , MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , DNA Helicases/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Bucais/patologia , Proteínas Nucleares/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/metabolismo
12.
BMC Nurs ; 22(1): 355, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794348

RESUMO

BACKGROUND: Given its apparent benefits, early mobilization is becoming increasingly important in spinal surgery. However, the time point at which patients first get out of bed for mobilization after spinal surgery varies widely. Beginning in January 2022, we conducted a study of early mobilization (mobilization within 4 h postoperatively) following multi-segment lumbar decompression and fusion surgery in elderly patients. The study goal was to better understand elderly patients' perceptions of early mobilization and ultimately contribute to the improvement of elderly patients' perioperative experiences and quality of life. METHODS: We employed a qualitative descriptive study design involving face-to-face semi-structured interviews. Forty-five consecutive patients were invited, among whom 24 were enrolled and completed the qualitative investigation from February to June 2022. Of these 24 patients, 10 underwent early mobilization (mobilization within 4 h postoperatively) and 14 underwent mobilization at ≥ 24 h postoperatively. Three researchers conducted a 15-question interview the day before each patient's discharge. The interviews were audio-recorded, and content analysis was used to assess the data. RESULTS: Six themes regarding the patients' experiences and concerns about early mobilization were identified: worries, benefits, daily routines, pain, education, and support. The study results revealed the obstacles in early mobilization practice and highlighted the importance of perioperative education on early mobilization. CONCLUSIONS: Clear and explicit guidance on early mobilization and a multidisciplinary mobilization protocol that incorporates a comprehensive pain management plan are essential for effective patient education. These measures may have positive effects on reducing patients' stress and anxiety regarding postoperative early mobilization.

13.
Appl Environ Microbiol ; 88(20): e0107622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197104

RESUMO

The Gram-negative bacterium Cytophaga hutchinsonii digests cellulose through a novel cellulose degradation mechanism. It possesses the lately characterized type IX secretion system (T9SS). We recently discovered that N-glycosylation of the C-terminal domain (CTD) of a hypothetical T9SS substrate protein in the periplasmic space of C. hutchinsonii affects protein secretion and localization. In this study, green fluorescent protein (GFP)-CTDCel9A recombinant protein was found with increased molecular weight in the periplasm of C. hutchinsonii. Site-directed mutagenesis studies on the CTD of cellulase Cel9A demonstrated that asparagine residue 900 in the D-X-N-X-S motif is important for the processing of the recombinant protein. We found that the glycosyltransferase-related protein GtrA (CHU_0012) located in the cytoplasm of C. hutchinsonii is essential for outer membrane localization of the recombinant protein. The deletion of gtrA decreased the abundance of the outer membrane proteins and affected cellulose degradation by C. hutchinsonii. This study provided a link between the glycosylation system and cellulose degradation in C. hutchinsonii. IMPORTANCE N-Glycosylation systems are generally limited to some pathogenic bacteria in prokaryotes. The disruption of the N-glycosylation pathway is related to adherence, invasion, colonization, and other phenotypic characteristics. We recently found that the cellulolytic bacterium Cytophaga hutchinsonii also has an N-glycosylation system. The cellulose degradation mechanism of C. hutchinsonii is novel and mysterious; cellulases and other proteins on the cell surface are involved in utilizing cellulose. In this study, we identified an asparagine residue in the C-terminal domain of cellulase Cel9A that is necessary for the processing of the T9SS cargo protein. Moreover, the glycosyltransferase-related protein GtrA is essential for the localization of the GFP-CTDCel9A recombinant protein. Deletion of gtrA affected cellulose degradation and the abundance of outer membrane proteins. This study enriched the understanding of the N-glycosylation system in C. hutchinsonii and provided a link between N-glycosylation and cellulose degradation, which also expanded the role of the N-glycosylation system in bacteria.


Assuntos
Celulase , Celulase/genética , Celulase/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Asparagina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cytophaga/genética , Cytophaga/metabolismo , Celulose/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Appl Environ Microbiol ; 88(2): e0183721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731049

RESUMO

Cytophaga hutchinsonii is an abundant soil cellulolytic bacterium that uses a unique cellulose degradation mechanism different from those that involve free cellulases or cellulosomes. Though several proteins have been identified as important for cellulose degradation, the mechanism used by C. hutchinsonii to digest crystalline cellulose remains a mystery. In this study, chu_0922 was identified by insertional mutation and gene deletion as an important gene locus indispensable for crystalline cellulose utilization. Deletion of chu_0922 resulted in defects in crystalline cellulose utilization. The Δ0922 mutant completely lost the ability to grow on crystalline cellulose, even with extended incubation, and selectively utilized the amorphous region of cellulose, leading to increased crystallinity. As a protein secreted by the type IX secretion system (T9SS), CHU_0922 was found to be located on the outer membrane, and the outer membrane localization of CHU_0922 relied on the T9SS. Comparative analysis of the outer membrane proteins revealed that the abundance of several cellulose-binding proteins, including CHU_1276, CHU_1277, and CHU_1279, was reduced in the Δ0922 mutant. Further study showed that CHU_0922 is crucial for the full expression of the gene cluster containing chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which is essential for cellulose utilization. Moreover, CHU_0922 is required for the cell surface localization of CHU_3220, a cellulose-binding protein that is essential for crystalline cellulose utilization. Our study provides insights into the complex system that C. hutchinsonii uses to degrade crystalline cellulose. IMPORTANCE The widespread aerobic cellulolytic bacterium Cytophaga hutchinsonii, belonging to the phylum Bacteroidetes, utilizes a novel mechanism to degrade crystalline cellulose. No genes encoding proteins specialized in loosening or disruption the crystalline structure of cellulose were identified in the genome of C. hutchinsonii, except for chu_3220 and chu_1557. The crystalline cellulose degradation mechanism remains enigmatic. This study identified a new gene locus, chu_0922, encoding a typical T9SS substrate that is essential for crystalline cellulose degradation. Notably, CHU_0922 is crucial for the normal transcription of chu_1276, chu_1277, chu_1278, chu_1279, and chu_1280 (cel9C), which play important roles in the degradation of cellulose. Moreover, CHU_0922 participates in the cell surface localization of CHU_3220. These results demonstrated that CHU_0922 plays a key role in the crystalline cellulose degradation network. Our study will promote the uncovering of the novel cellulose utilization mechanism of C. hutchinsonii.


Assuntos
Proteínas de Transporte , Celulose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Cytophaga/genética , Cytophaga/metabolismo
15.
Appl Environ Microbiol ; 88(1): e0160621, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644163

RESUMO

Cytophaga hutchinsonii is a Gram-negative bacterium belonging to the phylum Bacteroidetes. It digests crystalline cellulose with an unknown mechanism and possesses a type IX secretion system (T9SS) that can recognize the C-terminal domain (CTD) of the cargo protein as a signal. In this study, the functions of the CTD in the secretion and localization of T9SS substrates in C. hutchinsonii were studied by fusing the green fluorescent protein (GFP) with the CTD from CHU_2708. The CTD is necessary for the secretion of GFP by C. hutchinsonii T9SS. The GFP-CTDCHU_2708 fusion protein was found to be glycosylated in the periplasm, with a molecular mass about 5 kDa higher than that predicted from its sequence. The glycosylated protein was sensitive to peptide-N-glycosidase F, which can hydrolyze N-linked oligosaccharides. Analyses of mutants obtained by site-directed mutagenesis of asparagine residues in the N-X-S/T motif of CTDCHU_2708 suggested that N-glycosylation occurred on the CTD. CTD N-glycosylation is important for the secretion and localization of GFP-CTD recombinant proteins in C. hutchinsonii. Glycosyltransferase-encoding gene chu_3842, a homologous gene of Campylobacter jejuni pglA, was found to participate in the N-glycosylation of C. hutchinsonii. Deletion of chu_3842 affected cell motility, cellulose degradation, and cell resistance to some chemicals. Our study provided evidence that the CTD as the signal of T9SS was N-glycosylated in the periplasm of C. hutchinsonii. IMPORTANCE The bacterial N-glycosylation system has previously been found only in several species of Proteobacteria and Campylobacterota, and the role of N-linked glycans in bacteria is still not fully understood. C. hutchinsonii has a unique cell contact cellulose degradation mechanism, and many cell surface proteins, including cellulases, are secreted by the T9SS. In this study, we found that C. hutchinsonii, a member of the phylum Bacteroidetes, has an N-glycosylation system. Glycosyltransferase CHU_3842 was found to participate in the N-glycosylation of C. hutchinsonii proteins and had effects on cell resistance to some chemicals, cell motility, and cellulose degradation. Moreover, N-glycosylation occurs on the CTD translocation signal of T9SS. The glycosylation of the CTD appears to play an important role in affecting T9SS substrate transportation and localization. This study enriched our understanding of the widespread existence and multiple biological roles of N-glycosylation in bacteria.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Cytophaga , Proteína C , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cytophaga/genética , Cytophaga/metabolismo , Glicosilação
16.
Biotechnol Bioeng ; 119(10): 2731-2742, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859248

RESUMO

With the increasingly serious drug resistance of Acinetobacter baumannii, there is an increasingly urgent need for new antibacterial drugs. Phage lysin PlyAB1 has a bactericidal effect on drug-resistant A. baumannii, which has the potential to replace antibiotics to fight infection caused by A. baumannii. However, its application is limited by its thermal stability and lytic activity. To solve these problems, molecular dynamics (MD) simulations combined with Hotspot wizard 3.0 were used to identify key residue sites affecting thermal stability, and evolutionary analysis combined with multiple sequence alignment was used to identify key residue sites affecting lytic activity. Four single-point variants with significantly increased thermal stability and four single-point variants with significantly lytic activity were obtained, respectively. Furthermore, by superimposing mutations, we obtained three double-point variants, G100Q/K69R, G100R/K69R, and G100K/K69R, with significantly improved thermal stability and improved lytic activity. At 45°C, the lytic activity and half-life of the optimal variant G100Q/K69R were 1.51- and 24-fold higher than those of the wild PlyAB1, respectively. These results deepen our understanding of the structure and function of phage lysin and contribute to the application of phage lysin in antibiotic substitution.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Antibacterianos/farmacologia , Bacteriófagos/genética , Mucoproteínas/farmacologia
17.
Microb Cell Fact ; 21(1): 171, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999567

RESUMO

BACKGROUND: Salmonella is a common foodborne pathogen, which can cause intestinal diseases. In the last decades, the overuse of antibiotics has led to a pandemic of drug-resistant bacterial infections. To tackle the burden of antimicrobial resistant pathogens, it is necessary to develop new antimicrobial drugs with novel modes of action. However, the research and development of antibiotics has encountered bottlenecks, scientific hurdles in the development process, as well as safety and cost challenges. Phages and phage endolysins are promising antibacterial agents that can be used as an alternative to antibiotics. In this context, the expression of endolysin derived from different phages through microbial cells as a chassis seems to be an attractive strategy. RESULTS: In this study, a new endolysin from the Salmonella phage XFII-1, named XFII, was screened and obtained. The endolysin yield exceeded 100 mg/mL by heterologous expression from E. coli BL21 and short induction. The endolysin XFII exhibited high bactericidal activity at a concentration of 0.5 µg/mL and reduced the OD600 nm of EDTA-pretreated E. coli JM109 from 0.8 to 0.2 within 5 min. XFII exhibited good thermo-resistance, as it was very stable at different temperatures from 20 to 80℃. Its bactericidal activity could keep constant at 4 °C for 175 days. In addition, the endolysin was able to exert lytic activity in eutrophic conditions, including LB medium and rabbit serum, and the lytic activity was even increased by 13.8% in 10% serum matrices. XFII also showed bactericidal activity against many Gram-negative bacteria, including Salmonella, E. coli, Acinetobacter baumannii, and Klebsiella pneumoniae. Surprisingly, the combination of endolysin XFII and chitosan showed a strong synergy in lysing E. coli and Salmonella without EDTA-pretreatment, and the OD600 nm of E. coli decreased from 0.88 to 0.58 within 10 min. CONCLUSIONS: The novel globular endolysin XFII was screened and successfully expressed in E. coli BL21. Endolysin XFII exhibits a broad lysis spectrum, a rapid and strong bactericidal activity, good stability at high temperatures and under eutrophic conditions. Combined with chitosan, XFII could spontaneously lyse Gram-negative bacteria without pretreatment. This work presented the first characterization of combining endolysin and chitosan in spontaneously lysing Gram-negative bacteria in vitro.


Assuntos
Bacteriófagos , Quitosana , Animais , Antibacterianos/farmacologia , Bacteriófagos/genética , Quitosana/farmacologia , Ácido Edético , Endopeptidases/genética , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Coelhos , Salmonella/genética , Salmonella/metabolismo
18.
Appl Microbiol Biotechnol ; 106(7): 2529-2540, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318522

RESUMO

Cytophaga hutchinsonii is an important Gram-negative bacterium belonging to the Bacteroides phylum that can efficiently degrade cellulose. But the promoter that mediates the initiation of gene transcription has been unknown for a long time. In this study, we determined the transcription start site (TSS) of C. hutchinsonii by 5' rapid amplification of cDNA ends (5'RACE). The promoter structure was first identified as TAAT and TATTG which are located -5 and -31 bp upstream of TSS, respectively. The function of -5 and -31 regions and the spacer length of the promoter Pchu_1284 were explored by site directed ligase-independent mutagenesis (SLIM). The results showed that the promoter activities were sharply decreased when the TTG motif was mutated into guanine (G) or cytosine (C). Interestingly, we found that the strong promoter was accompanied with many TTTG motifs which could enhance the promoter activities within certain copies. These characteristics were different from other promoters of Bacteriodes species. Furthermore, we carried out genome scanning analysis for C. hutchinsonii and another Bacteroides species by Perl6.0. The results indicated that the promoter structure of C. hutchinsonii possessed more unique features than other species. Also, the screened inducible promoter Pchu_2268 was used to overexpress protein CHU_2196 with a molecular weight of 120 kDa in C. hutchinsonii. The present study enriched the promoter structure of Bacteroidetes species and also provided a novel method for the highly expressed large protein (cellulase) in vivo, which was helpful to elucidate the unique cellulose degradation mechanism of C. hutchinsonii.Key points• The conserved structure of strong promoter of C. hutchinsonii was elucidated.• Two novel regulation motifs of TTTG and AATTATG in the promoter were discovered.• A new method for induced expression of cellulase in vivo was established.• Helpful for explained the unique cellulose degradation mechanism of C. hutchinsonii.


Assuntos
Celulase , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Cytophaga/genética , Cytophaga/metabolismo
19.
Acta Biochim Biophys Sin (Shanghai) ; 54(2): 261-270, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130616

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide and HCC patients often develop drug resisitene. Long non-coding RNAs (LncRNAs) are closely related to cell cycle, growth, development, differentiation, and apoptosis. Abnormally expressed lncRNAs have been proved to mediate drug resistance in tumor cells. However, the effect of LIMT on drug resistance has not been explored in HCC. In this study, we explored the effect of long non-coding RNA LIMT on drug resistance and its underlying mechanism in hepatocellular carcinoma (HCC). Our results showed that LncRNA LINC01089 (LIMT) expression is downregulated in 78.57% (44/56) of 56 HCC tumor tissue samples. LIMT expression is also downregulated in HCC cells compared with that in normal liver LO2 cells. Inhibition of LIMT increases the resistance to sorafenib and promotes cell invasion via regulation of epithelial to mesenchymal transition (EMT) in HCC. StarBase V3.0 was used to predict the potential binding site of miR-665 in . Furthermore, miR-665 participates in sorafenib resistance and also regulates the level of EMT-related proteins in HCC cells. A rescue experiment demonstrated that silencing of eliminats the inhibitory effect of the miR-665 inhibitor on sorafenib resistance in HCC cells. Taken together, our findings revealed that downregulation of LIMT increases the resistance of HCC to sorafenib via miR-665 and EMT. Therefore, LIMT, which serves as a therapeutically effective target, will provide new hope for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
20.
BMC Biol ; 19(1): 118, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34130700

RESUMO

BACKGROUND: Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS: We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION: This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.


Assuntos
Galinhas , Domesticação , Animais , Animais Domésticos/genética , Galinhas/genética , Genoma , Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA