Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 486(7403): 375-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22722196

RESUMO

The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.

2.
Nature ; 450(7166): 71-3, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17972878

RESUMO

Magnetic fields are believed to have a vital role in regulating and shaping the flow of material onto and away from protostars during their initial mass accretion phase. It is becoming increasingly accepted that bipolar outflows are generated and collimated as material is driven along magnetic field lines and centrifugally accelerated off a rotating accretion disk. However, the precise role of the magnetic field is poorly understood and evidence for its shape and structure has not been forthcoming. Here we report imaging circular polarimetry in the near-infrared and Monte Carlo modelling showing that the magnetic field along the bipolar outflow of the HH 135-136 young stellar object is helical. The field retains this shape for large distances along the outflow, so the field structure can also provide the necessary magnetic pressure for collimation of the outflow. This result lends further weight to the hypothesis--central to any theory of star formation--that the outflow is an important instrument for the removal of high-angular-momentum material from the accretion disk, thereby allowing the central protostar to increase its mass.

3.
Orig Life Evol Biosph ; 40(3): 335-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20213160

RESUMO

We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.


Assuntos
Meio Ambiente Extraterreno , Luz , Sistema Solar , Radiação , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA