Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exerc Sport Sci Rev ; 51(4): 150-160, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288975

RESUMO

Exercise transiently impacts the expression, regulation, and activity of TERT/telomerase to maintain telomeres and protect the genome from insults. By protecting the telomeres (chromosome ends) and the genome, telomerase promotes cellular survival and prevents cellular senescence. By increasing cellular resiliency, via the actions of telomerase and TERT, exercise promotes healthy aging.


Assuntos
Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Senescência Celular/genética
2.
Genes Dev ; 28(22): 2464-76, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25403178

RESUMO

While global chromatin conformation studies are emerging, very little is known about the chromatin conformation of human telomeres. Most studies have focused on the role of telomeres as a tumor suppressor mechanism. Here we describe how telomere length regulates gene expression long before telomeres become short enough to produce a DNA damage response (senescence). We directly mapped the interactions adjacent to specific telomere ends using a Hi-C (chromosome capture followed by high-throughput sequencing) technique modified to enrich for specific genomic regions. We demonstrate that chromosome looping brings the telomere close to genes up to 10 Mb away from the telomere when telomeres are long and that the same loci become separated when telomeres are short. Furthermore, expression array analysis reveals that many loci, including noncoding RNAs, may be regulated by telomere length. We report three genes (ISG15 [interferon-stimulated gene 15 kd], DSP [Desmoplakin], and C1S [complement component 1s subcomplement]) located at three different subtelomeric ends (1p, 6p, and 12p) whose expressions are altered with telomere length. Additionally, we confirmed by in situ analysis (3D-FISH [three-dimensional fluorescence in situ hybridization]) that chromosomal looping occurs between the loci of those genes and their respective telomere ends. We term this process TPE-OLD for "telomere position effect over long distances." Our results suggest a potential novel mechanism for how telomere shortening could contribute to aging and disease initiation/progression in human cells long before the induction of a critical DNA damage response.


Assuntos
Regulação da Expressão Gênica , Encurtamento do Telômero/genética , Telômero/genética , Telômero/metabolismo , Células Cultivadas , Cromatina/metabolismo , Perfilação da Expressão Gênica , Humanos , Mioblastos/citologia
3.
J Biol Chem ; 294(30): 11579-11596, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31186347

RESUMO

Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.


Assuntos
Fatores Biológicos/metabolismo , Telomerase/antagonistas & inibidores , Catálise , Domínio Catalítico , Linhagem Celular , Ativação Enzimática , Humanos , Telomerase/metabolismo
4.
PLoS Biol ; 14(12): e2000016, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977688

RESUMO

Telomerase is expressed in early human development and then becomes silenced in most normal tissues. Because ~90% of primary human tumors express telomerase and generally maintain very short telomeres, telomerase is carefully regulated, particularly in large, long-lived mammals. In the current report, we provide substantial evidence for a new regulatory control mechanism of the rate limiting catalytic protein component of telomerase (hTERT) that is determined by the length of telomeres. We document that normal, young human cells with long telomeres have a repressed hTERT epigenetic status (chromatin and DNA methylation), but the epigenetic status is altered when telomeres become short. The change in epigenetic status correlates with altered expression of TERT and genes near to TERT, indicating a change in chromatin. Furthermore, we identified a chromosome 5p telomere loop to a region near TERT in human cells with long telomeres that is disengaged with increased cell divisions as telomeres progressively shorten. Finally, we provide support for a role of the TRF2 protein, and possibly TERRA, in the telomere looping maintenance mechanism through interactions with interstitial TTAGGG repeats. This provides new insights into how the changes in genome structure during replicative aging result in an increased susceptibility to age-related diseases and cancer prior to the initiation of a DNA damage signal.


Assuntos
Envelhecimento/genética , Regulação Enzimológica da Expressão Gênica , Neoplasias/genética , Telomerase/genética , Telômero , Animais , Cromossomos Humanos Par 5 , Humanos , Primatas/genética
5.
Genome Res ; 25(12): 1781-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26359233

RESUMO

DNA is organized into complex three-dimensional chromatin structures, but how this spatial organization regulates gene expression remains a central question. These DNA/chromatin looping structures can range in size from 10-20 kb (enhancers/repressors) to many megabases during intra- and inter-chromosomal interactions. Recently, the influence of telomere length on chromatin organization prior to senescence has revealed the existence of long-distance chromatin loops that dictate the expression of genes located up to 10 Mb from the telomeres (Telomere Position Effect-Over Long Distances [TPE-OLD]). Here, we demonstrate the existence of a telomere loop at the 4q35 locus involving the sorbin and SH3 domain-containing protein 2 gene, SORBS2, a skeletal muscle protein using a modification of the chromosome conformation capture method. The loop reveals a cis-acting mechanism modifying SORBS2 transcription. The expression of this gene is altered by TPE-OLD in myoblasts from patients affected with the age-associated genetic disease, facioscapulohumeral muscular dystrophy (FSHD1A, MIM 158900). SORBS2 is expressed in FSHD myoblasts with short telomeres, while not detectable in FSHD myoblasts with long telomeres or in healthy myoblasts regardless of telomere length. This indicates that TPE-OLD may modify the regulation of the 4q35 locus in a pathogenic context. Upon differentiation, both FSHD and healthy myotubes express SORBS2, suggesting that SORBS2 is normally up-regulated by maturation/differentiation of skeletal muscle and is misregulated by TPE-OLD-dependent variegation in FSHD myoblasts. These findings provide additional insights for the complexity and age-related symptoms of FSHD.


Assuntos
Proteínas de Homeodomínio/genética , Células Musculares/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Encurtamento do Telômero , Telômero/genética , Ativação Transcricional , Proteínas Adaptadoras de Transdução de Sinal , Biópsia , Deleção Cromossômica , Cromossomos Humanos Par 4 , Metilação de DNA , Epistasia Genética , Regulação da Expressão Gênica , Loci Gênicos , Proteínas de Homeodomínio/metabolismo , Humanos , Hibridização in Situ Fluorescente , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos , Proteínas de Ligação a RNA
6.
Exp Physiol ; 102(4): 397-410, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28166612

RESUMO

NEW FINDINGS: What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes.


Assuntos
Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Telômero/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Reparo do DNA/genética , Feminino , Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/genética , RNA Mensageiro/genética , Corrida/fisiologia
7.
Nucleic Acids Res ; 42(13): e104, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24861623

RESUMO

The telomere repeat amplification protocol (TRAP) for the human reverse transcriptase, telomerase, is a PCR-based assay developed two decades ago and is still used for routine determination of telomerase activity. The TRAP assay can only reproducibly detect ∼ 2-fold differences and is only quantitative when compared to internal standards and reference cell lines. The method generally involves laborious radioactive gel electrophoresis and is not conducive to high-throughput analyzes. Recently droplet digital PCR (ddPCR) technologies have become available that allow for absolute quantification of input deoxyribonucleic acid molecules following PCR. We describe the reproducibility and provide several examples of a droplet digital TRAP (ddTRAP) assay for telomerase activity, including quantitation of telomerase activity in single cells, telomerase activity across several common telomerase positive cancer cells lines and in human primary peripheral blood mononuclear cells following mitogen stimulation. Adaptation of the TRAP assay to digital format allows accurate and reproducible quantification of the number of telomerase-extended products (i.e. telomerase activity; 57.8 ± 7.5) in a single HeLa cell. The tools developed in this study allow changes in telomerase enzyme activity to be monitored on a single cell basis and may have utility in designing novel therapeutic approaches that target telomerase.


Assuntos
Ensaios Enzimáticos/métodos , Reação em Cadeia da Polimerase/métodos , Telomerase/análise , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Linfócitos/enzimologia , Camundongos
8.
Aging Clin Exp Res ; 28(3): 435-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26415498

RESUMO

Polymorphisms in the vitamin D receptor (VDR) gene are some of the most studied in relation to skeletal muscle traits and significant associations have been observed by multiple groups. One such paper by our group provided the first evidence of a genetic association with sarcopenia in men, but that finding has yet to be replicated in an independent cohort. In the present study, we examined multiple VDR polymorphisms in relation to skeletal muscle traits and sarcopenia in 864 men and women across the adult age span. In addition to VDR genotypes and haplotypes, measurements of skeletal muscle strength and fat-free mass (FFM) were determined in all subjects and a measure of sarcopenia was calculated. We observed significant associations between Fok1 and Bsm1 genotypes and skeletal muscle strength in men and women, though these associations were modest and no significant associations were observed for these polymorphisms and muscle mass traits nor for Bsm1-Taq1 haplotype with muscle strength. Fok1 FF genotype was associated with an increased the risk of sarcopenia in older women compared to f-allele carriers (1.3-fold higher risk). These results support previous findings that VDR genetic variation appears to impact skeletal muscle strength and risk for sarcopenia but the influence is modest.


Assuntos
Força Muscular/fisiologia , Receptores de Calcitriol/genética , Sarcopenia , Adulto , Alelos , Feminino , Variação Genética , Genótipo , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Fenótipo , Polimorfismo Genético , Sarcopenia/diagnóstico , Sarcopenia/genética , Sarcopenia/fisiopatologia , Fatores Sexuais
9.
Exp Physiol ; 98(10): 1469-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771910

RESUMO

Early life and preconception environmental stimuli can affect adult health-related phenotypes. Exercise training is an environmental stimulus affecting many systems throughout the body and appears to alter offspring phenotypes. The aim of this study was to examine the influence of parental exercise training, or 'exercise ancestry', on morphological and metabolic phenotypes in two generations of mouse offspring. The F0 C57BL/6 mice were exposed to voluntary exercise (EX) or sedentary lifestyle (SED) and bred with like-exposed mates to produce an F1 generation. The F1 mice of both ancestries were sedentary and killed at 8 weeks or bred with littermates to produce an F2 generation, which was also sedentary and killed at 8 weeks. Small but broad generation- and sex-specific effects of exercise ancestry were observed for body mass, fat and muscle mass, serum insulin, glucose tolerance and muscle gene expression. The F1 EX females were lighter than F1 SED females and had lower absolute tibialis anterior and omental fat masses. Serum insulin was higher in F1 EX females compared with F1 SED females. The F2 EX females had impaired glucose tolerance compared with F2 SED females. Analysis of skeletal muscle mRNA levels revealed several generation- and sex-specific differences in mRNA levels for multiple genes, especially those related to metabolic genes (e.g. F1 EX males had lower mRNA levels of Hk2, Ppard, Ppargc1a, Adipoq and Scd1 than F1 SED males). These results provide preliminary evidence that parental exercise training can influence health-related phenotypes in mouse offspring.


Assuntos
Atividade Motora/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Glicemia/metabolismo , Feminino , Intolerância à Glucose/genética , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fenótipo , Gravidez , RNA Mensageiro/metabolismo , Fatores Sexuais
10.
PLoS One ; 18(8): e0289327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531400

RESUMO

Part of the regulation of telomerase activity includes the alternative splicing (AS) of the catalytic subunit telomerase reverse transcriptase (TERT). Although a therapeutic window for telomerase/TERT inhibition exists between cancer cells and somatic cells, stem cells express TERT and rely on telomerase activity for physiological replacement of cells. Therefore, identifying differences in TERT regulation between stem cells and cancer cells is essential for developing telomerase inhibition-based cancer therapies that reduce damage to stem cells. In this study, we measured TERT splice variant expression and telomerase activity in induced pluripotent stem cells (iPSCs), neural progenitor cells (NPCs), and non-small cell lung cancer cells (NSCLC, Calu-6 cells). We observed that a NOVA1-PTBP1-PTBP2 axis regulates TERT alternative splicing (AS) in iPSCs and their differentiation into NPCs. We also found that splice-switching of TERT, which regulates telomerase activity, is induced by different cell densities in stem cells but not cancer cells. Lastly, we identified cell type-specific splicing factors that regulate TERT AS. Overall, our findings represent an important step forward in understanding the regulation of TERT AS in stem cells and cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Células-Tronco Pluripotentes Induzidas , Neoplasias Pulmonares , Telomerase , Humanos , Processamento Alternativo , Telomerase/genética , Telomerase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
11.
J Appl Physiol (1985) ; 135(4): 849-862, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675469

RESUMO

Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Adulto Jovem , Exercício Físico , Inflamação , Músculo Esquelético , NF-kappa B , Receptor para Produtos Finais de Glicação Avançada
12.
Med Sci Sports Exerc ; 54(6): 931-943, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135999

RESUMO

INTRODUCTION: Aerobic exercise maintains telomere length through increased human telomerase reverse transcriptase (hTERT) expression and telomerase enzyme activity. The impact of acute exercise on hTERT alternative splicing (AS) is unknown. PURPOSE: This study aimed to examine hTERT AS in response to acute treadmill running. METHODS: A bacterial artificial chromosome mouse model containing the 54-kilobase hTERT gene locus inserted into its genome (hTERT-BAC) was utilized. The gastrocnemius, left ventricle, and brain were excised before (Pre), upon cessation (Post), and during recovery (1, 24, 48, and 72 h; n = 5/time point) from treadmill running (30 min at 60% maximum speed). Full-length (FL) hTERT and the "minus beta" (-ß) AS variant (skips exons 7 and 8 and does not code for active telomerase) were measured by gel-based and droplet digital reverse transcription-polymerase chain reaction methods. SF3B4 and SRSF2 protein expression were measured by Western blotting. RESULTS: Compared with Pre, FL hTERT increased at Post before decreasing during recovery in the gastrocnemius (48 and 72 h; P ≤ 0.001) and left ventricle (24 h; P = 0.004). The percentage of FL hTERT in the gastrocnemius also increased during recovery (1 and 72 h; P ≤ 0.017), whereas a decrease was observed in the left ventricle (1, 24, and 48 h; P ≤ 0.041). hTERT decreased in the brain (48 h), whereas FL hTERT percentage remained unaltered. SF3B4 protein expression decreased throughout recovery in the gastrocnemius and tended to be associated with FL hTERT (r = -0.348, P = 0.075) and -ß in opposite directions (r = 0.345, P = 0.067). CONCLUSIONS: Endurance exercise increased hTERT gene expression, and altered FL hTERT splicing in contractile tissues and may maintain telomere length necessary to improve the function and health of the organism.


Assuntos
Processamento Alternativo , Condicionamento Físico Animal , Telomerase , Animais , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Telomerase/genética
13.
Mol Cancer Res ; 20(10): 1574-1588, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852380

RESUMO

Splicing of the hTERT gene to produce the full-length (FL) transcript is necessary for telomerase enzyme activity and telomere-dependent cellular immortality in the majority of human tumors, including non-small cell lung cancer (NSCLC) cells. The molecular machinery to splice hTERT to the FL isoform remains mostly unknown. Previously, we reported that an intron 8 cis-element termed "direct repeat 8" (DR8) promotes FL hTERT splicing, telomerase, and telomere length maintenance when bound by NOVA1 and PTBP1 in NSCLC cells. However, some NSCLC cells and patient tumor samples lack NOVA1 expression. This leaves a gap in knowledge about the splicing factors and cis-elements that promote telomerase in the NOVA1-negative context. We report that DR8 regulates FL hTERT splicing in the NOVA1-negative and -positive lung cancer contexts. We identified splicing factor 3b subunit 4 (SF3B4) as an RNA trans-factor whose expression is increased in lung adenocarcinoma (LUAD) tumors compared with adjacent normal tissue and predicts poor LUAD patient survival. In contrast to normal lung epithelial cells, which continued to grow with partial reductions of SF3B4 protein, SF3B4 knockdown reduced hTERT splicing, telomerase activity, telomere length, and cell growth in lung cancer cells. SF3B4 was also demonstrated to bind the DR8 region of hTERT pre-mRNA in both NOVA1-negative and -positive NSCLC cells. These findings provide evidence that DR8 is a critical binding hub for trans-factors to regulate FL hTERT splicing in NSCLC cells. These studies help define mechanisms of gene regulation important to the generation of telomerase activity during carcinogenesis. IMPLICATIONS: Manipulation of a core spliceosome protein reduces telomerase/hTERT splicing in lung cancer cells and results in slowed cancer cell growth and cell death, revealing a potential therapeutic strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Telomerase , Processamento Alternativo , Carcinoma Pulmonar de Células não Pequenas/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Íntrons , Neoplasias Pulmonares/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico , Telomerase/genética , Telomerase/metabolismo
14.
Exp Physiol ; 96(3): 338-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21097644

RESUMO

As part of the insulin signalling pathway, Akt influences growth and metabolism. The AKT1 gene G205T (rs1130214) polymorphism has potential functional effects. Thus, we determined whether the G205T polymorphism influences metabolic variables and their responses to aerobic exercise training. Following dietary stabilization, healthy, sedentary, 50- to 75-year-old Caucasian men (n = 51) and women (n = 58) underwent 6 months of aerobic exercise training. Before and after completing the intervention, dual-energy X-ray absorptiometry was used to measure percentage body fat, computed tomography to measure visceral and subcutaneous fat, and oral glucose tolerance testing to measure glucose total area under the curve (AUC), insulin AUC and insulin sensitivity. Taqman assay was used to determine AKT1 G205T genotypes. At baseline, men with the GG genotype (n = 29) had lower maximal oxygen consumption (VO2 max) values (P = 0.026) and higher percentage body fat (P = 0.046), subcutaneous fat (P = 0.021) and insulin AUC (P = 0.003) values than T allele carriers (n = 22). Despite their rather disadvantageous starting values, men with the GG genotype seemed to respond to exercise training more robustly than men with the T allele, highlighted by significantly greater fold change improvements in insulin AUC (P = 0.012) and glucose AUC (P = 0.035). Although the GG group also significantly improved VO2 max with training, the change in VO2 max was not as great as that of the T allele carriers (P = 0.037). In contrast, after accounting for hormone replacement therapy use, none of the variables differed in the women at baseline. As a result of exercise training, women with the T allele (n = 20) had greater fold change improvements in fasting glucose (P = 0.011), glucose AUC (P = 0.017) and insulin sensitivity (P = 0.044) than GG genotype women (n = 38). Our results suggest that the AKT1 G205T polymorphism influences metabolic variables and their responses to aerobic exercise training in older, previously sedentary individuals.


Assuntos
Exercício Físico/fisiologia , Obesidade/genética , Proteínas Proto-Oncogênicas c-akt/genética , População Branca/genética , Absorciometria de Fóton/métodos , Tecido Adiposo/metabolismo , Fatores Etários , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/etnologia , Obesidade/metabolismo , Fenótipo , Polimorfismo Genético , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos , Fatores Sexuais
15.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531916

RESUMO

Alternative RNA splicing impacts the majority (>90%) of eukaryotic multi-exon genes, expanding the coding capacity and regulating the abundance of gene isoforms. Telomerase (hTERT) is a key example of a gene that is alternatively spliced during human fetal development and becomes dysregulated in nearly all cancers. Approximately 90% of human tumors use telomerase to synthesize de novo telomere repeats and obtain telomere-dependent cellular immortality. Paradigm shifting data indicates that hTERT alternative splicing, in addition to transcription, plays an important role in the regulation of active telomerase in cells. Our group and others are pursuing the basic science studies to progress this emerging area of telomerase biology. Recent evidence demonstrates that switching splicing of hTERT from the telomerase activity producing full-length hTERT isoform to alternatively spliced, non-coding isoforms may be a novel telomerase inhibition strategy to prevent cancer growth and survival. Thus, the goals of this review are to detail the general roles of telomerase in cancer development, explore the emerging regulatory mechanisms of alternative RNA splicing of the hTERT gene in various somatic and cancer cell types, define the known and potential roles of hTERT splice isoforms in cancer cell biology, and provide insight into new treatment strategies targeting hTERT in telomerase-positive cancers.

16.
Cancers (Basel) ; 11(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091669

RESUMO

The reactivation of telomerase in cancer cells remains incompletely understood. The catalytic component of telomerase, hTERT, is thought to be the limiting component in cancer cells for the formation of active enzymes. hTERT gene expression is regulated at several levels including chromatin, DNA methylation, transcription factors, and RNA processing events. Of these regulatory events, RNA processing has received little attention until recently. RNA processing and alternative splicing regulation have been explored to understand how hTERT is regulated in cancer cells. The cis- and trans-acting factors that regulate the alternative splicing choice of hTERT in the reverse transcriptase domain have been investigated. Further, it was discovered that the splicing factors that promote the production of full-length hTERT were also involved in cancer cell growth and survival. The goals are to review telomerase regulation via alternative splicing and the function of hTERT splicing variants and to point out how bioinformatics approaches are leading the way in elucidating the networks that regulate hTERT splicing choice and ultimately cancer growth.

17.
J Vis Exp ; (147)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107456

RESUMO

The telomere repeat amplification protocol (TRAP) is the most widely used assay to detect telomerase activity within a given a sample. The polymerase chain reaction (PCR)-based method allows for robust measurements of enzyme activity from most cell lysates. The gel-based TRAP with fluorescently labeled primers limits sample throughput, and the ability to detect differences in samples is restricted to two fold or greater changes in enzyme activity. The droplet digital TRAP, ddTRAP, is a highly sensitive approach that has been modified from the traditional TRAP assay, enabling the user to perform a robust analysis on 96 samples per run and obtain absolute quantification of the DNA (telomerase extension products) input within each PCR. Therefore, the newly developed ddTRAP assay overcomes the limitations of the traditional gel-based TRAP assay and provides a more efficient, accurate, and quantitative approach to measuring telomerase activity within laboratory and clinical settings.


Assuntos
Reação em Cadeia da Polimerase/métodos , Telômero/metabolismo , Humanos
18.
Aging Cell ; 18(1): e12859, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30488553

RESUMO

It is generally recognized that the function of the immune system declines with increased age and one of the major immune changes is impaired T-cell responses upon antigen presentation/stimulation. Some "high-performing" centenarians (100+ years old) are remarkably successful in escaping, or largely postponing, major age-related diseases. However, the majority of centenarians ("low-performing") have experienced these pathologies and are forced to reside in long-term nursing facilities. Previous studies have pooled all centenarians examining heterogeneous populations of resting/unstimulated peripheral blood mononuclear cells (PBMCs). T cells represent around 60% of PBMC and are in a quiescence state when unstimulated. However, upon stimulation, T cells rapidly divide and exhibit dramatic changes in gene expression. We have compared stimulated T-cell responses and identified a set of transcripts expressed in vitro that are dramatically different in high- vs. low-performing centenarians. We have also identified several other measurements that are different between high- and low-performing centenarians: (a) The amount of proliferation following in vitro stimulation is dramatically greater in high-performing centenarians compared to 67- to 83-year-old controls and low-performing centenarians; (b) telomere length is greater in the high-performing centenarians; and (c) telomerase activity following stimulation is greater in the high-performing centenarians. In addition, we have validated a number of genes whose expression is directly related to telomere length and these are potential fundamental biomarkers of aging that may influence the risk and progression of multiple aging conditions.


Assuntos
Linfócitos T/metabolismo , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Biomarcadores/metabolismo , Proliferação de Células , Replicação do DNA , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Oncogene ; 38(16): 2937-2952, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30568224

RESUMO

Alternative splicing is dysregulated in cancer cells, driving the production of isoforms that allow tumor cells to survive and continuously proliferate. Part of the reactivation of telomerase involves the splicing of hTERT transcripts to produce full-length (FL) TERT. Very few splicing factors to date have been described to interact with hTERT and promote the production of FL TERT. We recently described one such splicing factor, NOVA1, that acts as an enhancer of FL hTERT splicing, increases telomerase activity, and promotes telomere maintenance in cancer cells. NOVA1 is expressed primarily in neurons and is involved in neurogenesis. In the present studies, we describe that polypyrimidine-tract binding proteins (PTBPs), which are also typically involved in neurogenesis, are also participating in the splicing of hTERT to FL in cancer. Knockdown experiments of PTBP1 in cancer cells indicate that PTBP1 reduces hTERT FL splicing and telomerase activity. Stable knockdown of PTBP1 results in progressively shortened telomere length in H1299 and H920 lung cancer cells. RNA pulldown experiments reveal that PTBP1 interacts with hTERT pre-mRNA in a NOVA1 dependent fashion. Knockdown of PTBP1 increases the expression of PTBP2 which also interacts with NOVA1, potentially preventing the association of NOVA1 with hTERT pre-mRNA. These new data highlight that splicing in cancer cells is regulated by competition for splice sites and that combinations of splicing factors interact at cis regulatory sites on pre-mRNA transcripts. By employing hTERT as a model gene, we show the coordination of the splicing factors NOVA1 and PTBP1 in cancer by regulating telomerase that is expressed in the vast majority of cancer cell types.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Neoplasias/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Telomerase/genética , Células A549 , Processamento Alternativo/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Antígeno Neuro-Oncológico Ventral , Splicing de RNA/genética
20.
Med Sci Sports Exerc ; 40(4): 677-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18317377

RESUMO

PURPOSE: Previous studies have linked an insertion/deletion polymorphism in the angiotensin-converting enzyme (ACE) gene with variability in muscle strength responses to strength training (ST), though conclusions have been inconsistent across investigations. Moreover, most previous studies have not investigated the influence of sex on the association of ACE I/D genotype with muscle phenotypes. The purpose of this study was to investigate the association of ACE genotype with muscle phenotypes before and after ST in older men and women. METHODS: Eighty-six inactive men and 139 inactive women, ages 50-85 yr (mean: 62 yr), were studied before and after 10 wk of unilateral knee extensor ST. The one-repetition maximum (1RM) test was used to assess knee extensor muscle strength, and computed tomography was used to measure quadriceps muscle volume (MV). Differences were compared among ACE genotype groups (II vs ID vs DD). RESULTS: Across the entire cohort at baseline, ACE genotype was significantly associated with total lean mass and body weight, with higher values in DD genotype carriers (both P < 0.05). At baseline, DD genotype carriers exhibited significantly greater MV compared with II genotype carriers for both the trained leg (men: 1828 +/- 44 vs 1629 +/- 70; women: 1299 +/- 34 vs 1233 +/- 49; P = 0.02) and untrained leg (men: 1801 +/- 46 vs 1559 +/- 72; women: 1268 +/- 36 vs 1189 +/- 51; P = 0.01), with no significant genotype x sex interaction. No ACE genotype associations were observed for the 1RM or MV adaptations to ST in either men or women. CONCLUSIONS: In the present study, ACE genotype was associated with baseline differences in muscle volume, but it was not associated with the muscle hypertrophic response to ST.


Assuntos
Contração Isométrica/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Peptidil Dipeptidase A/genética , Levantamento de Peso/fisiologia , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Índice de Massa Corporal , Feminino , Genótipo , Humanos , Contração Isométrica/genética , Masculino , Pessoa de Meia-Idade , Força Muscular/genética , Fenótipo , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA