Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811145

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.


Assuntos
Farmacorresistência Viral/genética , Mutação , Vírus Sinciciais Respiratórios/genética , Animais , Antivirais/toxicidade , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células Hep G2 , Humanos , Palivizumab/toxicidade , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Vírus Sinciciais Respiratórios/patogenicidade , Genética Reversa/métodos , Células Vero
2.
Curr Opin Infect Dis ; 36(3): 155-163, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939556

RESUMO

PURPOSE OF REVIEW: Respiratory syncytial virus (RSV) continues to be a major cause of severe lower respiratory tract infection in infants, young children, and older adults. In this review, changes in the epidemiology of RSV during the coronavirus disease 2019 (COVID-19) pandemic are highlighted together with the role which increased molecular surveillance efforts will have in future in assessing the efficacy of vaccines and therapeutics. RECENT FINDINGS: The introduction of nonpharmaceutical intervention (NPIs) strategies during the COVID-19 pandemic between 2020 and 2022 resulted in worldwide disruption to the epidemiology of RSV infections, especially with respect to the timing and peak case rate of annual epidemics. Increased use of whole genome sequencing along with efforts to better standardize the nomenclature of RSV strains and discrimination of RSV genotypes will support increased monitoring of relevant antigenic sites in the viral glycoproteins. Several RSV vaccine candidates based on subunit, viral vectors, nucleic acid, or live attenuated virus strategies have shown efficacy in Phase 2 or 3 clinical trials with vaccines using RSVpreF protein currently the closest to approval and use in high-risk populations. Finally, the recent approval and future use of the extended half-life human monoclonal antibody Nirsevimab will also help to alleviate the morbidity and mortality burden caused by annual epidemics of RSV infections. SUMMARY: The ongoing expansion and wider coordination of RSV molecular surveillance efforts via whole genome sequencing will be crucial for future monitoring of the efficacy of a new generation of vaccines and therapeutics.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Humanos , COVID-19/epidemiologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano/genética
3.
J Clin Microbiol ; 60(5): e0250521, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35491822

RESUMO

Canine distemper virus (CDV) is an animal morbillivirus belonging to the family Paramyxoviridae and has caused major epizootics with high mortality levels in susceptible wildlife species. In recent years, the documented genetic diversity of CDV has expanded, with new genotypes identified in India, the Caspian Sea, and North America. However, no quantitative real-time PCR (RT-qPCR) that has been validated for the detection of all genotypes of CDV is currently available. We have therefore established and characterized a pan-genotypic probe-based RT-qPCR assay based on the detection of a conserved region of the phosphoprotein (P) gene of CDV. This assay has been validated using virus strains representative of six genotypes of CDV in different sample types, including frozen tissue, formalin-fixed paraffin-embedded tissue sections, and virus isolates. The primers and probe target sequences were sufficiently conserved to also enable detection of the phocine distemper virus strains responsible for epizootics in harbor seals in the North Sea in 1988 and 2002. Comparison with two recently published RT-qPCR assays for CDV showed that under equivalent conditions the primers and probe set reported in this study were more sensitive in detecting nucleic acids from an Asia-4 genotype, which displays sequence variation in primer and probe binding sites. In summary, this validated new pan-genotypic RT-qPCR assay will facilitate screening of suspected distemper cases caused by novel genotypes for which full genome sequences are unavailable and have utility in detecting multiple CDV strains in geographical regions where multiple genotypes cocirculate in wildlife.


Assuntos
Vírus da Cinomose Canina , Cinomose , Animais , Animais Domésticos , Animais Selvagens/genética , Cinomose/diagnóstico , Vírus da Cinomose Canina/genética , Vírus da Cinomose Focina/genética , Cães , Genótipo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa
4.
Virol J ; 19(1): 89, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610654

RESUMO

Bovine adenovirus 7 (BAdV-7) is an unclassified member of the genus Atadenovirus with a worldwide distribution and has been reported to induce clinical disease of varying severity in infected cattle, ranging from asymptomatic infections to severe enteric or respiratory disease. In this study, we used next-generation sequencing to obtain the first complete genome sequence of a European strain of BadV-7, from pooled spleen and liver tissue obtained from a deceased newborn Limousin calf. Histopathological analysis and electron microscopy showing systemic lesions in multiple organs with intranuclear amphophilic inclusions observed in endothelial cells in multiple peripheral tissues. Virus isolation was readily achieved from tissue homogenate using bovine esophagus cells (KOP-R), a strategy which should facilitate future in vitro or in vivo BAdV-7 studies. Phylogenetic analysis of available genome sequences of BAdV-7 showed that the newly identified strain groups most closely with a recent BAdV-7 strain, SD18-74, from the USA, confirming that this newly identified strain is a member of the Atadenovirus genus. The fiber gene was found to be highly conserved within BAdV-7 strains but was highly divergent in comparison to Ovine adenovirus 7 (OAdV-7) (39.56% aa sequence identity). Furthermore, we report a variable region of multiple tandem repeats between the coding regions of E4.1 and RH5 genes. In summary, the presented pathological and molecular characterization of this case suggests that further research into the worldwide molecular epidemiology and disease burden of BAdV-7 is warranted.


Assuntos
Atadenovirus , Doenças dos Bovinos , Animais , Atadenovirus/genética , Bovinos , Células Endoteliais , Fases de Leitura Aberta , Filogenia , Ovinos
5.
BMC Bioinformatics ; 20(1): 144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876387

RESUMO

BACKGROUND: Using meta-analysis, high-dimensional transcriptome expression data from public repositories can be merged to make group comparisons that have not been considered in the original studies. Merging of high-dimensional expression data can, however, implicate batch effects that are sometimes difficult to be removed. Removing batch effects becomes even more difficult when expression data was taken using different technologies in the individual studies (e.g. merging of microarray and RNA-seq data). Network meta-analysis has so far not been considered to make indirect comparisons in transcriptome expression data, when data merging appears to yield biased results. RESULTS: We demonstrate in a simulation study that the results from analyzing merged data sets and the results from network meta-analysis are highly correlated in simple study networks. In the case that an edge in the network is supported by multiple independent studies, network meta-analysis produces fold changes that are closer to the simulated ones than those obtained from analyzing merged data sets. Finally, we also demonstrate the practicability of network meta-analysis on a real-world data example from neuroinfection research. CONCLUSIONS: Network meta-analysis is a useful means to make new inferences when combining multiple independent studies of molecular, high-throughput expression data. This method is especially advantageous when batch effects between studies are hard to get removed.


Assuntos
Regulação da Expressão Gênica , Metanálise em Rede , Transcriptoma/genética , Simulação por Computador , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos
6.
PLoS Pathog ; 13(5): e1006371, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28481926

RESUMO

Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically distinct recombinant (r) canine distemper viruses (CDV) expressing different fluorescent reporter proteins for in vivo competition and airborne transmission studies in ferrets (Mustela putorius furo). Six donor ferrets simultaneously received three rCDVs expressing green, red or blue fluorescent proteins via conjunctival (ocular, Oc), intra-nasal (IN) or intra-tracheal (IT) inoculation. Two days post-inoculation sentinel ferrets were placed in physically separated adjacent cages to assess airborne transmission. All donor ferrets developed lymphopenia, fever and lethargy, showed progressively increasing systemic viral loads and were euthanized 14 to 16 days post-inoculation. Systemic replication of virus inoculated via the Oc, IN and IT routes was detected in 2/6, 5/6 and 6/6 ferrets, respectively. In five donor ferrets the IT delivered virus dominated, although replication of two or three different viruses was detected in 5/6 animals. Single lymphocytes expressing multiple fluorescent proteins were abundant in peripheral blood and lymphoid tissues, demonstrating the occurrence of double and triple virus infections. Transmission occurred efficiently and all recipient ferrets showed evidence of infection between 18 and 22 days post-inoculation of the donor ferrets. In all cases, airborne transmission resulted in replication of a single-colored virus, which was the dominant virus in the donor ferret. This study demonstrates that morbilliviruses can use multiple entry routes in parallel, and co-infection of cells during viral dissemination in the host is common. Airborne transmission was efficient, although transmission of viruses expressing a single color suggested a bottleneck event. The identity of the transmitted virus was not determined by the site of inoculation but by the viral dominance during dissemination.


Assuntos
Vírus da Cinomose Canina/fisiologia , Furões , Infecções por Morbillivirus/virologia , Morbillivirus/fisiologia , Animais , Chlorocebus aethiops , Coinfecção , Genes Reporter , Morbillivirus/patogenicidade , Infecções por Morbillivirus/transmissão , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Células Vero , Carga Viral , Internalização do Vírus
7.
Arch Virol ; 164(10): 2537-2543, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309291

RESUMO

In May 2017, many free-ranging dorcas gazelles (Gazella dorcas) with suspected signs of peste des petits ruminants (PPR) were reported in Dinder National Park, South-Eastern Sudan. Peste des petits ruminants virus (PPRV) antigen and nucleic acid were detected in specimens from these gazelles using an immunocapture ELISA and a reverse transcription polymerase chain reaction (RT-PCR) assays. PPRV was also detected in four healthy semi-captive dorcas gazelles from two areas of Khartoum State. Phylogenetic analysis showed that these PPRV strains belonged to the lineage IV genotype. The present study demonstrates that gazelles are a potential wild small ruminant host for PPRV and may influence the epidemiology of PPR in the Sudan.


Assuntos
Antílopes/virologia , Reservatórios de Doenças , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Animais , Antígenos Virais/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Genótipo , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/genética , Filogenia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Gastropatias , Sudão
8.
Emerg Infect Dis ; 24(9): 1691-1695, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30124416

RESUMO

We isolated Batai virus from the brain of a euthanized, 26-year-old, captive harbor seal with meningoencephalomyelitis in Germany. We provide evidence that this orthobunyavirus can naturally infect the central nervous system of a mammal. The full-genome sequence showed differences from a previously reported virus isolate from a mosquito in Germany.


Assuntos
Infecções por Bunyaviridae/veterinária , Encefalite/veterinária , Orthobunyavirus/isolamento & purificação , Phoca , Animais , Animais de Zoológico , Infecções por Bunyaviridae/complicações , Infecções por Bunyaviridae/diagnóstico , Culicidae , Diagnóstico Diferencial , Encefalite/complicações , Encefalite/diagnóstico , Alemanha , Insetos Vetores , Masculino , Mar do Norte , Orthobunyavirus/genética , Filogenia
9.
Vet Pathol ; 55(3): 434-441, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29421972

RESUMO

Bocaviruses are small nonenveloped DNA viruses belonging to the Bocaparvovirus genus of the Parvoviridae family and have been linked to both respiratory and enteric disease in humans and animals. To date, 3 bocaviruses, canine bocaviruses 1 to 3 (CBoV-1-3), have been shown to affect dogs with different disease manifestations reported for infected animals. We used next-generation sequencing to identify a novel strain of canine CBoV-2 (CBoV TH-2016) in a litter of puppies that died in Thailand from acute dyspnea and hemoptysis, for which no causal pathogen could be identified in routine assays. Analysis of the complete coding sequences of CBoV TH-2016 showed that this virus was most closely related to a strain previously identified in South Korea (isolate 14D193), with evidence of genetic recombination in the VP2 gene with related strains from South Korea and Hong Kong. Use of quantitative polymerase chain reaction showed the presence of CBoV TH-2016 in several tissues, suggesting hematogenous virus spread, while only intestinal tissue was found to be positive by in situ hybridization and electron microscopy. Histologic small intestinal lesions associated with CBoV TH-2016 infection were eosinophilic intranuclear inclusion bodies within villous enterocytes without villous atrophy or fusion, similar to those previously considered pathognomonic for CBoV-1 infection. Therefore, this study provides novel insights in the pathogenicity of canine bocavirus infections and suggests that a novel recombinant CBoV-2 may result in atypical findings of CBoV infection. Although the specific cause of death of these puppies remained undetermined, a contributory role of enteric CBoV TH-2016 infection is possible.


Assuntos
Bocavirus/classificação , Doenças do Cão/patologia , Infecções por Parvoviridae/veterinária , Animais , Doenças do Cão/virologia , Cães , Infecções por Parvoviridae/patologia , Infecções por Parvoviridae/virologia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA