Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 14(12): 1092-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24113208

RESUMO

Nucleosome remodelling enzymes of the ISWI family reposition nucleosomes in eukaryotes. ISWI contains an ATPase and a HAND-SANT-SLIDE (HSS) domain. Conformational changes between these domains have been proposed to be critical for nucleosome repositioning by pulling flanking DNA into the nucleosome. We inserted flexible linkers at strategic sites in ISWI to disrupt this putative power stroke and assess its functional importance by quantitative biochemical assays. Notably, the flexible linkers did not disrupt catalysis. Instead of engaging in a power stroke, the HSS module might therefore assist DNA to ratchet into the nucleosome. Our results clarify the roles had by the domains and suggest that the HSS domain evolved to optimize a rudimentary remodelling engine.


Assuntos
Adenosina Trifosfatases/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Montagem e Desmontagem da Cromatina , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Nucleossomos/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética
2.
Mol Cell Proteomics ; 11(4): M111.012088, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22167269

RESUMO

We present a strategy for rapidly gaining structural information about a protein from crosslinks formed by genetically encoded unnatural amino acids. We applied it to ISWI, a chromatin remodeling enzyme involved in chromatin assembly, DNA replication and transcription. ISWI is part of the vast Snf2 family of helicase-related proteins, many of which constitute the catalytic cores of chromatin remodeling complexes. Structural information about this family is scarce, hampering our mechanistic understanding of chromatin remodeling. Making use of cells that harbor a special tRNA/aminoacyl-tRNA synthetase pair, several residues within the ATPase domain of ISWI were individually substituted with the UV-reactive unnatural amino acid p-benzoyl-p-phenylalanine. Intramolecular crosslinks could be mapped with amino acid precision by high resolution tandem mass spectrometry and the novel bioinformatic tool "Crossfinder." Most crosslinks were fully consistent with published crystal structures of ISWI-related ATPases. A subset of crosslinks, however, disagreed with the conformations previously captured in crystal structures. We built a structural model using the distance information obtained from the crosslinks and the structure of the closest crystallized relative, Chd1. The model shows the ATPase lobes strongly rotated against each other, a movement postulated earlier to be necessary to achieve a catalytically competent state. The minimal requirements for solubility and protein amounts make our approach ideal for studying structures and conformations of proteins that are not amenable to conventional structural techniques.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Drosophila/química , Fatores de Transcrição/química , Adenosina Trifosfatases/genética , Benzofenonas/química , Cromatografia Líquida , Proteínas de Drosophila/genética , Escherichia coli/genética , Modelos Moleculares , Conformação Molecular , Mutação , Fenilalanina/análogos & derivados , Fenilalanina/química , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Raios Ultravioleta
3.
Methods Mol Biol ; 1805: 349-370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971727

RESUMO

ATP-dependent nucleosome remodeling factors sculpt the nucleosomal landscape of eukaryotic chromatin. They deposit or evict nucleosomes or reposition them along DNA in a process termed nucleosome sliding. Remodeling has traditionally been analyzed using mononucleosomes as a model substrate. In vivo, however, nucleosomes form extended arrays with regular spacing. Here, we describe how regularly spaced nucleosome arrays can be reconstituted in vitro and how these arrays can be used to dissect remodeling in the test tube. We outline two assays. The first assay senses various structural changes to a specific nucleosome within the nucleosomal array whereas the second assay is specific toward detecting repositioning of nucleosomes within the array. Both assays exploit changes to the accessibility of DNA to restriction enzymes during the remodeling reaction.


Assuntos
Montagem e Desmontagem da Cromatina , Eletroforese em Gel de Ágar/métodos , Nucleossomos/metabolismo , Animais , Drosophila , Histonas/metabolismo , Especificidade por Substrato
4.
Structure ; 26(2): 282-294.e6, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29395785

RESUMO

Chromatin remodeling factors assume critical roles by regulating access to nucleosomal DNA. To determine the architecture of the Drosophila ISWI remodeling enzyme, we developed an integrative structural approach that combines protein cross-linking, mass spectrometry, small-angle X-ray scattering, and computational modeling. The resulting structural model shows the ATPase module in a resting state with both ATPase lobes twisted against each other, providing support for a conformation that was recently trapped by crystallography. The autoinhibiting NegC region does not protrude from the ATPase module as suggested previously. The regulatory NTR domain is located near both ATPase lobes. The full-length enzyme is flexible and can adopt a compact structure in solution with the C-terminal HSS domain packing against the ATPase module. Our data imply a series of conformational changes upon activation of the enzyme and illustrate how the NTR, NegC, and HSS domains contribute to regulation of the ATPase module.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Drosophila/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Drosophila melanogaster , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Elife ; 62017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109157

RESUMO

ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1.


Assuntos
Adenosina Trifosfatases/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Animais , Drosophila , Ligação Proteica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Fatores de Transcrição/genética
6.
Mol Cell Biol ; 35(9): 1588-605, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733687

RESUMO

Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Animais , Proteínas de Ligação a DNA/química , Drosophila melanogaster/química , Nucleossomos/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química
7.
Nat Struct Mol Biol ; 20(1): 82-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202585

RESUMO

ISWI slides nucleosomes along DNA, enabling the structural changes of chromatin required for the regulated use of eukaryotic genomes. Prominent mechanistic models imply cooperation of the ISWI ATPase domain with a C-terminal DNA-binding function residing in the HAND-SANT-SLIDE (HSS) domain. Contrary to these models, we show by quantitative biochemical means that all fundamental aspects of nucleosome remodeling are contained within the compact ATPase module of Drosophila ISWI. This domain can independently associate with DNA and nucleosomes, which in turn activate ATP turnover by inducing a conformational change in the enzyme, and it can autonomously reposition nucleosomes. The role of the HSS domain is to increase the affinity and specificity for nucleosomes. Nucleosome-remodeling enzymes may thus have evolved directly from ancestral helicase-type motors, and peripheral domains have furnished regulatory capabilities that bias the remodeling reaction toward different structural outcomes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cromatina , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histonas/química , Histonas/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA